[1] |
宫飞翔, 李德智, 田世明, 等. 综合能源系统关键技术综述与展望[J]. 可再生能源, 2019, 37(8):1229-1235.
|
|
GONG Feixiang, LI Dezhi, TIAN Shiming, et al. Overview and prospects of key technologies for integrated energy systems[J]. Renewable Energy, 2019, 37(8):1229-1235.
|
[2] |
程浩忠, 胡枭, 王莉, 等. 区域综合能源系统规划研究综述[J]. 电力系统自动化, 2019, 43(7):2-13.
|
|
CHENG Haozhong, HU Xiao, WANG Li, et al. A review of regional integrated energy system planning research[J]. Automation of Electric Power Systems, 2019, 43(7):2-13.
|
[3] |
ZHANG Zhijun, YUE Dong, DOU Chunxia. DMPC based coordinated voltage control for integrated hybrid energy system[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10):6786-6797.
doi: 10.1109/TII.2020.3046633
|
[4] |
朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23):7905-7923.
|
|
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Overview of data-driven comprehensive energy system load forecasting[J]. Proceedings of the CSEE, 2021, 41(23):7905-7923.
|
[5] |
胡瑞琨, 吴煜宇, 郑豪丰, 等. 综合能源系统整体架构设计及负荷预测[J]. 宁夏电力, 2021(4):9-14,21.
|
|
HU Ruikun, WU Yuyu, ZHENG Haofeng, et al. Integrated energy system overall architecture design and load forecasting[J]. Ningxia Electric Power, 2021(4):9-14,21.
|
[6] |
段成俊. 区域综合能源系统负荷预测和优化调度研究[D]. 镇江: 江苏大学, 2020.
|
|
DUAN Chengjun. Research on load forecast and optimal dispatch of regional integrated energy system[D]. Zhenjiang: Jiangsu University, 2020.
|
[7] |
RENDON-SANCHEZ J F, DE MENEZES L M. Structural combination of seasonal exponential smoothing forecasts applied to load forecasting[J]. European Journal of Operational Research, 2019, 275(3):916-924.
doi: 10.1016/j.ejor.2018.12.013
|
[8] |
刘鑫, 滕欢, 宫毓斌, 等. 基于改进卡尔曼滤波算法的短期负荷预测[J]. 电测与仪表, 2019, 56(3):42-46.
|
|
LIU Xin, TENG Huan, GONG Yubin, et al. Short-term load forecasting based on improved Kalman filter algorithm[J]. Electrical Measurement & Instrumentation, 2019, 56(3):42-46.
|
[9] |
ZHANG Zhijun, ZHANG Yudi, YUE Dong, et al. Economic-driven hierarchical voltage regulation of incremental distribution networks:A cloud-edge collaboration based perspective[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3):1746-1757.
doi: 10.1109/TII.2021.3085670
|
[10] |
WANG Yi, GAN Dahua, ZHANG Ning, et al. Feature selection for probabilistic load forecasting via sparse penalized quantile regression[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(5):1200-1209.
doi: 10.1007/s40565-019-0552-3
|
[11] |
DING Jia, WANG Maolin, PING Zuowei, et al. An integrated method based on relevance vector machine for short-term load forecasting[J]. European Journal of Operational Research, 2020, 287(2):497-510.
doi: 10.1016/j.ejor.2020.04.007
|
[12] |
谭风雷, 陈梦涛, 汪龙龙. 基于积温效应和优化支持向量机的短期电力负荷预测[J]. 电力需求侧管理, 2018, 20(5):33-36.
|
|
TAN Fenglei, CHEN Mengtao, WANG Longlong. Short-term power load forecasting based on accumulated temperature effect and optimized support vector machine[J]. Power Demand Side Management, 2018, 20(5):33-36.
|
[13] |
李焱, 贾雅君, 李磊, 等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020, 48(21):117-124.
|
|
LI Yan, JIA Yajun, LI Lei, et al. Short-term power load forecasting based on random forest algorithm[J]. Power System Protection and Control, 2020, 48(21):117-124.
|
[14] |
LI Jinghua, WEI Shanyang, DAI Wei. Combination of manifold learning and deep learning algorithms for mid-term electrical load forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5):2584-2593.
doi: 10.1109/TNNLS.2021.3106968
|
[15] |
FARSI B, AMAYRI M, BOUGUILA N, et al. On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach[J]. IEEE Access, 2021, 9:31191-31212.
doi: 10.1109/Access.6287639
|
[16] |
PARIZAD A, HATZIADONIU C. Deep learning algorithms and parallel distributed computing techniques for high-resolution load forecasting applying hyperparameter optimization[J]. IEEE Systems Journal, 2022, 16(3):3758-3769.
doi: 10.1109/JSYST.2021.3130080
|
[17] |
陈锦植, 刘海琼, 梁宏池, 等. 基于LSTM的配电网线路超短期负荷预测方法[J]. 能源工程, 2021(5):66-70.
|
|
CHEN Jinzhi, LIU Haiqiong, LIANG Hongchi, et al. Super short-term load forecasting method of distribution network based on LSTM[J]. Energy Engineering, 2021(5):66-70.
|
[18] |
朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-BiLSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11):4532-4539.
|
|
ZHU Lingjian, XUN Zihan, WANG Yuxin, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11):4532-4539.
|
[19] |
王克杰, 张瑞. 基于改进BP神经网络的短期电力负荷预测方法研究[J]. 电测与仪表, 2019, 56(24):115-121.
|
|
WANG Kejie, ZHANG Rui. Research on short-term power load forecasting method based on improved BP neural network[J]. Electrical Measurement & Instrumentation, 2019, 56(24):115-121.
|
[20] |
金山红, 朱想, 赫卫国, 等. 基于相空间重构ARIMA和SVR的母线净负荷预测[J]. 电力需求侧管理, 2018, 20(2):20-24.
|
|
JIN Shanhong, ZHU Xiang, HE Weiguo, et al. Bus net load forecast based on phase space reconstruction ARIMA and SVR[J]. Power Demand Side Management, 2018, 20(2):20-24.
|