[1] |
HAN Xuebing, LU Languang, ZHENG Yuejiu, et al. A review on the key issues of the lithium-ion battery degradation among the whole life cycle[J]. ETransportation, 2019, 1:100005.
doi: 10.1016/j.etran.2019.100005
|
[2] |
ZHANG Jingliang, LEE J. A review on prognostics and health monitoring of Li-ion battery[J]. Journal of Power Sources, 2011, 196(15):6007-6014.
doi: 10.1016/j.jpowsour.2011.03.101
|
[3] |
XIONG Rui, LI Linlin, TIAN Jinpeng. Towards a smarter battery management system:A critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405:18-29.
doi: 10.1016/j.jpowsour.2018.10.019
|
[4] |
刘勇智, 詹群, 盛增津, 等. 最小二乘支持向量机在航空蓄电池剩余容量预测中的应用[J]. 蓄电池, 2013, 50(3):118-120,144.
|
|
LIU Yongzhi, ZHAN Qun, SHENG Zengjin, et al. Application of least-squares support vector machine for residual capacity prediction of aviation batteries[J]. Battery, 2013, 50(3):118-120,144.
|
[5] |
ZHU Mingye, OUYANG Quan, WAN Yong, et al. Remaining useful life prediction of lithium-ion batteries:A hybrid approach of grey-Markov chain model and improved Gaussian process[J/OL]. IEEE Journal of Emerging and Selected Topics in Power Electronics,[2021-07-19],DOI:10.1109/JESTPE.2021.3098378.
doi: 10.1109/JESTPE.2021.3098378
|
[6] |
CHAOUI H, IBE-EKEOCHA C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10):8773-8783.
doi: 10.1109/TVT.2017.2715333
|
[7] |
PARK K, CHOI Y, CHOI W, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles[J]. IEEE Access, 2020, 8:20786-20798.
doi: 10.1109/ACCESS.2020.2968939
|
[8] |
CUI Shengming, JOE I. A dynamic spatial-temporal attention-based GRU model with healthy features for state-of-health estimation of lithium-ion batteries[J]. IEEE Access, 2021, 9:27374-27388.
doi: 10.1109/ACCESS.2021.3058018
|
[9] |
YOU G W, PARK S, OH D. Diagnosis of electric vehicle batteries using recurrent neural networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6):4885-4893.
doi: 10.1109/TIE.2017.2674593
|
[10] |
REN Lei, DONG Jiabao, WANG Xiaokang, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2020, 17(5):3478-3487.
doi: 10.1109/TII.2020.3008223
|
[11] |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. Computer Science, 2014:1409.0473.
|
[12] |
RAFFEL C, ELLIS D P W. Feed-forward networks with attention can solve some long-term memory problems[P]. DOI:10.48550/arXiv.1512.08756,2015.
doi: 10.48550/arXiv.1512.08756,2015
|
[13] |
CHENG Jiezhu, HUANG Kaizhu, ZHENG Zibin. Towards better forecasting by fusing near and distant future visions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4):3593-3600.
doi: 10.1609/aaai.v34i04.5766
|
[14] |
CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1):41-75.
doi: 10.1023/A:1007379606734
|
[15] |
SAHA B, GOEBEL K. Battery data set[DB]. NASA AMES Prognostics Data Repository, 2007. http://tiarc.nasa.gov/project/prognostic-datarepository.
|
[16] |
HU Xiaosong, JIANG Jiuchun, CAO Dongpu, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2015, 63(4):2645-2656.
|
[17] |
REYES O, VENTURA S. Performing multi-target regression via a parameter sharing-based deep network[J]. International Journal of Neural Systems, 2019, 29(9):1950014.
doi: 10.1142/S012906571950014X
|
[18] |
LIBERMAN N, TROPE Y. The role of feasibility and desirability considerations in near and distant future decisions:A test of temporal construal theory[J]. Journal of Personality and Social Psychology, 1998, 75(1):5.
doi: 10.1037/0022-3514.75.1.5
|
[19] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[20] |
KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173:24-49.
doi: 10.1016/j.isprsjprs.2020.12.010
|
[21] |
SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[J]. Advances in Neural Information Processing Systems, 2018, 31:2488-2498.
|
[22] |
LI Shuqing, JU Chuankun, LI Jianliang, et al. State-of-charge estimation of lithium-ion batteries in the battery degradation process based on recurrent neural network[J]. Energies, 2021, 14(2):306.
doi: 10.3390/en14020306
|
[23] |
曹广华, 赵中林, 许昀昊. 基于GRU的锂电池组健康状态预测研究[J]. 吉林大学学报, 2022, 40(2):181-187.
|
|
CAO Guanghua, ZHAO Zhonglin, XU Yunhao. Research on health state prediction of lithium battery pack based on GRU[J]. Journal of Jilin University, 2022, 40(2):181-187.
|
[24] |
张菁, 吴尚青. 基于LSTM和注意力机制的锂电池荷电状况预测[J]. 九江学院学报, 2021, 36(3):29-34.
|
|
ZHANG Jing, WU Shangqing. Li-ion battery charge condition prediction based on LSTM and attention mechanism[J]. Journal of Jiujiang College, 2021, 36(3):29-34.
|
[25] |
SAON S, HIYAMA T. Predicting remaining useful life of rotating machinery based artificial neural network[J]. Computers & Mathematics with Applications, 2010, 60(4):1078-1087.
doi: 10.1016/j.camwa.2010.03.065
|
[26] |
王钟毅, 姬晓, 左思. 基于BP神经网络的锂电池剩余寿命预测[J]. 汽车实用技术, 2021, 46(1):8-9.
|
|
WANG Zhongyi, JI Xiao, ZUO Si. Residual life prediction of lithium battery based on BP neural network[J]. Automotive Practical Technology, 2021, 46(1):8-9.
|
[27] |
付强, 王华伟. 基于多层LSTM的复杂系统剩余寿命智能预测[J]. 兵器装备工程学报, 2022, 43(1):161-169.
|
|
FU Qiang, WANG Huawei. Intelligent prediction of remaining life of complex systems based on multilayer LSTM[J]. Journal of Arms and Equipment Engineering, 2022, 43(1):161-169.
|