电气工程学报 ›› 2023, Vol. 18 ›› Issue (2): 142-148.doi: 10.11985/2023.02.013

• 电力系统 • 上一篇    下一篇

扫码分享

基于Bagging-组合核函数相关向量机的短期负荷预测模型研究*

邱山1(), 龚文杰2(), 张智晟1()   

  1. 1.青岛大学电气工程学院 青岛 266071
    2.国网青岛供电公司 青岛 266002
  • 收稿日期:2021-08-10 修回日期:2022-05-20 出版日期:2023-06-25 发布日期:2023-07-12
  • 通讯作者: 张智晟,男,1975年生,博士,教授。主要研究方向为电力系统短期负荷预测和经济调度。E-mail:slnzzs@126.com
  • 作者简介:邱山,男,1998年生,硕士研究生。主要研究方向为电力系统负荷预测。E-mail:qiushan6789@126.com
    龚文杰,男,1974年生,硕士,高级工程师。主要研究方向为电力系统运行与管理。E-mail:18678997882@163.com
  • 基金资助:
    国家自然科学基金资助项目(52077108)

Research on Short-term Load Forecasting Model Based on Bagging-combined Kernel Function Relevance Vector Machine

QIU Shan1(), GONG Wenjie2(), ZHANG Zhisheng1()   

  1. 1. College of Electrical Engineering, Qingdao University, Qingdao 266071
    2. Qingdao Electric Power Company of State Grid, Qingdao 266002
  • Received:2021-08-10 Revised:2022-05-20 Online:2023-06-25 Published:2023-07-12

摘要:

为充分发挥组合核函数在相关向量机预测模型中的优势,有效提高负荷预测的精度,提出基于Bagging-组合核函数相关向量机的短期负荷预测模型。首先构造了高斯核函数与Morlet小波核函数加权组合的组合核函数相关向量机的预测模型,然后采用粒子群算法对两个核函数的最优权值进行优选。为提高模型的泛化能力,采用Bagging算法对原始数据多次抽样构造训练样本集。通过实际算例仿真,与多种相关向量机预测模型对比分析,验证了该模型具有较好的预测精度。

关键词: 短期负荷预测, 相关向量机, 组合核函数, Bagging算法, 小波核函数

Abstract:

In order to give full play to the advantages of the combined kernel function in the relevance vector machine forecasting model and effectively improve the accuracy of load forecasting, a short-term load forecasting model based on the Bagging-combined kernel function correlation vector machine is proposed. Firstly, the forecasting model of combined kernel function relevance vector machine is constructed by weighted combination of Gaussian kernel function and Morlet wavelet kernel function, and then the particle swarm optimization algorithm is used to optimize the optimal weights of the two kernel functions. In order to improve the generalization ability of the model, the Bagging algorithm is used to sample the original data multiple times to construct a training sample set. Through the simulation of actual example, compared with a variety of relevance vector machine forecasting models, it is verified that the proposed model has good prediction accuracy.

Key words: Short-term load forecasting, relevance vector machine, combinatorial kernel function, Bagging algorithm, Morlet wavelet kernel function

中图分类号: