[1] |
李金, 张喜铭, 谢型浪, 等. 变电站安全运维装置技术方案[J]. 电气工程学报, 2020, 15(4):114-120.
|
|
LI Jin, ZHANG Ximing, XIE Xinglang, et al. Technical scheme of substation safety operation and maintenance device[J]. Journal of Electrical Engineering, 2020, 15(4):114-120.
|
[2] |
周立辉, 张永生, 孙勇, 等. 智能变电站巡检机器人研制及应用[J]. 电力系统自动化, 2011, 35(19):85-88.
|
|
ZHOU Lihui, ZHANG Yongsheng, SUN Yong, et al. Development and application of equipment inspection robot for smart substations[J]. Automation of Electric Power Systems, 2011, 35(19):85-88.
|
[3] |
谢林枫, 蒋超, 孙秋芹, 等. 基于AMC算法的变电站巡检机器人地图创建与定位[J]. 电力工程技术, 2019, 38(5):16-23.
|
|
XIE Linfeng, JIANG Chao, SUN Qiuqin, et al. The global map’s creating and positioning of substation inspection robot based on adaptive Monte Carlo particle filter algorithm[J]. Electrical Power Engineering Technology, 2019, 38(5):16-23.
|
[4] |
袁朝晖, 付文龙, 李佰霖, 等. 基于多策略分割融合与形态特征辨识的变电站保护压板状态识别[J]. 电力系统保护与控制, 2022, 50(1):98-106.
|
|
YUAN Zhaohui, FU Wenlong, LI Bailin, et al. Protection platen status recognition for a smart substation based on multi-strategy segmentation and fusion and morphological feature identification[J]. Power System Protection and Control, 2022, 50(1):98-106.
|
[5] |
付文龙, 谭佳文, 吴喜春, 等. 基于图像处理与形态特征分析的智能变电站保护压板状态识别[J]. 电力自动化设备, 2019, 39(7):203-207.
|
|
FU Wenlong, TAN Jiawen, WU Xichun, et al. Protection platen status recognition based on image processing and morphological feature analysis for smart substation[J]. Electric Power Automation Equipment, 2019, 39(7):203-207.
|
[6] |
梁辰, 孙建文, 王兰玉, 等. 应用聚类和证据理论实现变电站保护压板状态校核[J]. 电网技术, 2020, 44(6):2343-2349.
|
|
LIANG Chen, SUN Jianwen, WANG Lanyu, et al. Application of clustering and evidence theory to checking the status of substation protection platen[J]. Power System Technology, 2020, 44(6):2343-2349.
|
[7] |
王伟, 张彦龙, 翟登辉, 等. 基于OpenCV+SSD深度学习模型的变电站压板状态智能识别[J]. 电测与仪表, 2022, 59(1):106-112.
|
|
WANG Wei, ZHANG Yanlong, ZHAI Denghui, et al. Intelligent identification of substation platen state based on OpenCV+SSD deep learning model[J]. Electrical Measurement & Instrumentation, 2022, 59(1):106-112.
|
[8] |
周克, 杨倩文, 王耀艺, 等. 一种改进的压板状态识别SSD算法[J]. 电测与仪表, 2021, 58(1):69-76.
|
|
ZHOU Ke, YANG Qianwen, WANG Yaoyi, et al. An improved SSD algorithm for pressure platestatus recognition[J]. Electrical Measurement & Instrumentation, 2021, 58(1):69-76.
|
[9] |
汪洋, 黎恒烜, 鄂士平, 等. 基于深度学习的变电站硬压板状态检测与识别算法[J]. 沈阳工业大学学报, 2020, 42(6):676-680.
doi: 10.7688/j.issn.1000-1646.2020.06.11
|
|
WANG Yang, LI Hengxuan, E Shiping, et al. State detection and recognition algorithm for hard platens of substation based on deep learning[J]. Journal of Shenyang University of Technology, 2020, 42(6):676-680.
doi: 10.7688/j.issn.1000-1646.2020.06.11
|
[10] |
ULLAH M B. CPU based YOLO:A real time object detection algorithm[C]// 2020 IEEE Region 10 Symposium (TENSYMP), June 5-7,2020,Dhaka,Bangladesh,2020:552-555.
|
[11] |
LIU Bingqian, HUANG Jianye, LIN Shuang, et al. Improved YOLOX-S abnormal condition detection for power transmission line corridors[C]// IEEE 3rd International Conference on Power Data Science(ICPDS), December 26-26,2021,Harbin,China,2021:13-16.
|
[12] |
LI Youyou, HE Binbin, MELGANI F, et al. Point-based weakly supervised learning for object detection in high spatial resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14(2):5361-5371.
doi: 10.1109/JSTARS.2021.3076072
|
[13] |
WANG C Y, LIAO H Y, WU Y H, et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), June 14-19,2020,Seattle,WA,USA,2020:1571-1580.
|
[14] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26,2017,Honolulu,HI,USA,2017:936-944.
|
[15] |
蔡逢煌, 张岳鑫, 黄捷. 基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J]. 模式识别与人工智能, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007
|
|
CAI Fenghuang, ZHANG Yuexin, HUANG Jie. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007
|
[16] |
GAO Zishu, YANG Guodong, LI En, et al. Novel feature fusion module-based detector for small insulator defect detection[J]. IEEE Sensors Journal, 2021, 21(15):16807-16814.
doi: 10.1109/JSEN.2021.3073422
|
[17] |
羊冰清, 张周燕, 朱小良. 基于数字图像处理的液位测量系统的研究与实现[J]. 电力工程技术, 2018, 37(4):57-64.
|
|
YANG Bingqing, ZHANG Zhouyan, ZHU Xiaoliang. Study and implement on the measurement system of liquid level based on digital image processing[J]. Electrical Power Engineering Technology, 2018, 37(4):57-64.
|
[18] |
操昊鹏, 曾卫明, 石玉虎, 等. 基于Hough变换和总体最小二乘法的电力线检测[J]. 计算机技术与发展, 2018, 28(10):164-167.
|
|
CAO Haopeng, ZENG Weiming, SHI Yuhu, et al. Power line detection based on Hough transform and total least squares method[J]. Computer Technology and Development, 2018, 28(10):164-167.
|
[19] |
李思妍, 台升, 张宇航, 等. 基于轻量化YOLOv3和Tesseract OCR的电力设备标志牌识别技术[J]. 智慧电力, 2021, 49(7):79-85,108.
|
|
LI Siyan, TAI Sheng, ZHANG Yuhang, et al. Electrical sign recognition technology based on simplified YOLOv3 and Tesseract OCR[J]. Smart Power, 2021, 49(7):79-85,108.
|
[20] |
陈昊, 姚凯, 张海华, 等. 变电站设备缺陷图像识别的实用化评价方法[J]. 湖北电力, 2021, 45(5):52-57.
|
|
CHEN Hao, YAO Kai, ZHANG Haihua, et al. A practical evaluation method for image recognition algorithm of device defects in substations[J]. Hubei Electric Power, 2021, 45(5):52-57.
|
[21] |
WANG Aili, WANG Minhui, JIANG Kaiyuan, et al. A novel lidar data classification algorithm combined densenet with STN[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium,July 28-August 2, 2019,Yokohama,Japan,2019:2483-2486.
|
[22] |
刘学平, 李玙乾, 刘励, 等. 嵌入SENet结构的改进YOLOV3目标识别算法[J]. 计算机工程, 2019, 45(11):243-248.
doi: 10.19678/j.issn.1000-3428.0052861
|
|
LIU Xueping, LI Yuqian, LIU Li, et al. Improved YOLOV3 target recognition algorithm with embedded SENet structure[J]. Computer Engineering, 2019, 45(11):243-248.
doi: 10.19678/j.issn.1000-3428.0052861
|