电气工程学报 ›› 2023, Vol. 18 ›› Issue (1): 143-152.doi: 10.11985/2023.01.016

• 电力系统 • 上一篇    下一篇

扫码分享

基于改进FCOS算法的架空输电线路防振锤检测*

吴彤1(), 李冰锋1(), 费树岷2(), 连东辉3,4()   

  1. 1.河南理工大学电气工程与自动化学院 焦作 454003
    2.东南大学自动化学院 南京 210096
    3.郑州煤矿机械集团股份有限公司 郑州 450016
    4.郑煤机液压电控有限公司 郑州 450016
  • 收稿日期:2021-08-24 修回日期:2021-12-14 出版日期:2023-03-25 发布日期:2023-04-19
  • 通讯作者: 吴彤,女,1997年生,硕士研究生。主要研究方向为目标检测。E-mail:2454905251@qq.com
  • 作者简介:李冰锋,男,1979年生,博士,讲师。主要研究方向为目标检测。E-mail:libingfeng@hpu.edu.cn
    费树岷,男,1961年生,博士,教授。主要研究方向为人工智能、非线性系统。E-mail:smfei@seu.edu.cn
    连东辉,男,1986年生,中级工程师。主要研究方向为自动化。E-mail:liandonghui@dingtalk.com
  • 基金资助:
    *河南省煤矿智能开采技术创新中心支撑(2021YD01);河南理工大学博士基金(B2018-33);贵州省科技计划(黔科合重大专项字[2018]3003-1)

Anti-vibration Hammer Detection of Overhead Transmission Lines Based on Improved FCOS Algorithm

WU Tong1(), LI Bingfeng1(), FEI Shumin2(), LIAN Donghui3,4()   

  1. 1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003
    2. School of Automation, Southeast University, Nanjing 210096
    3. Zhengzhou Coal Mine Machinery Group Co., Ltd., Zhengzhou 450016
    4. Zheng Coal Machine Hydraulic Electric Control Co., Ltd., Zhengzhou 450016
  • Received:2021-08-24 Revised:2021-12-14 Online:2023-03-25 Published:2023-04-19

摘要:

防振锤是架空输电线路系统中一种重要的电气设备,对防止架空线路因风吹而发生周期性疲劳破坏具有重要意义。航拍图像中,防振锤具有尺寸较小、形态各异、背景复杂多变、检测难度较大等问题。针对这些问题,采用单阶段全卷积目标检测网络(Fully convolutional one-stage object detection,FCOS)来进行架空输电线路防振锤检测。为了提高检测精度,将FCOS特征提取层的各个特征点看作随机变量,用各阶中心矩的组合表达其随机分布,并在此基础上提出了一种基于各阶中心矩的空间注意力机制,来准确描述图像特征的权重分布。试验结果表明,改进后的FCOS在不同阈值下的平均检测精度均高于原始的FCOS,当阈值为0.5时,平均检测精度达到94.9%。同时,该方法在不同阈值下的平均检测精度,大大超过了其他主流的注意力机制。

关键词: 架空输电线路, FCOS, 防振锤检测, 矩特征, 空间注意力机制

Abstract:

Anti-vibration hammer is an important electrical equipment in overhead transmission line system. It is of great significance to prevent the periodic fatigue failure of overhead line due to wind blowing. In aerial images, the vibration hammer is small in size, different in shape, complex and changeable in background, and difficult to detect. To solve this problem, fully one-stage convolution target detection network(FCOS) is used to detect the vibration hammer of overhead transmission lines. In order to improve the detection accuracy, each feature point of FCOS feature extraction layer is regarded as a random variable, and its random distribution is expressed by the combination of each order center moment. On this basis, a spatial attention mechanism based on the central moments of each order is proposed to accurately describe the weight distribution of image features. The experimental results show that the average detection accuracy of the improved FCOS is higher than the original FCOS at different thresholds, when the threshold is 0.5, the average detection accuracy reaches 94.9%. At the same time, the average detection accuracy of this method under different threshold values is much better than other mainstream attention mechanisms.

Key words: Overhead transmission line, FCOS, anti-vibration hammer detection, moment feature, spatial attention mechanism

中图分类号: