[1] |
曾波, 吴昆霖. 大规模特高压交直流混联电网特性分析与运行控制[J]. 南方农机, 2018, 49(17):214.
|
|
ZENG Bo, WU Kunlin. Characteristic analysis and operation control of large scale high voltage AC/DC hybrid power grid[J]. China Southern Agricultural Machinery, 2018, 49(17):214.
|
[2] |
赵晋泉, 邓晖, 吴小辰, 等. 基于广域响应的电力系统暂态稳定控制技术评述[J]. 电力系统保护与控制, 2016, 44(5):1-9.
|
|
ZHAO Jinquan, DENG Hui, WU Xiaochen, et al. Review on power system transient stability control technologies based on PMU/WAMS[J]. Power System Protection and Control, 2016, 44(5):1-9.
|
[3] |
罗深增, 李银红, 石东源. 广域测量系统可观性概率评估及其在PMU优化配置中的应用[J]. 电工技术学报, 2018, 33(8):1844-1853.
|
|
LUO Shenzeng, LI Yinhong, SHI Dongyuan. Wide area monitoring system observability probabilistic evaluation and it’s application in optimal PMU placement[J]. Transactions of China Electrotechnical Society, 2018, 33(8):1844-1853.
|
[4] |
石访, 张林林, 胡熊伟, 等. 基于多属性决策树的电网暂态稳定规则提取方法[J]. 电工技术学报, 2019, 34(11):2364-2374.
|
|
SHI Fang, ZHANG Linlin, HU Xiongwei, et al. Power system transient stability rules extraction based on multi-attribute decision tree[J]. Transactions of China Electrotechnical Society, 2019, 34(11):2364-2374.
|
[5] |
RAHMATIAN M, CHEN Yu, PALIZBAN A, et al. Transient stability assessment via decision trees and multivariate adaptive regression splines[J]. Electric Power Systems Research, 2017, 142:320-328.
doi: 10.1016/j.epsr.2016.09.030
|
[6] |
SUN Zhifang, LI Yi. Optimization of decision tree machine learning strategy in data analysis[J]. Journal of Physics:Conference Series, 2020, 1693(1):012219.
doi: 10.1088/1742-6596/1693/1/012219
|
[7] |
戴远航, 陈磊, 张玮灵, 等. 基于多支持向量机综合的电力系统暂态稳定评估[J]. 中国电机工程学报, 2016, 36(5):1173-1180.
|
|
DAI Yuanhang, CHEN Lei, ZHANG Weiling, et al. Power system transient stability assessment based on multi-support vector machines[J]. Proceedings of the CSEE, 2016, 36(5):1173-1180.
|
[8] |
姜涛, 王长江, 陈厚合, 等. 基于正则化投影孪生支持向量机的电力系统暂态稳定评估[J]. 电力系统自动化, 2019, 43(1):141-148.
|
|
JIANG Tao, WANG Changjiang, CHEN Houhe, et al. Transient stability assessment of power system based on projection twin support vector machine with regularization[J]. Automation of Electric Power Systems, 2019, 43(1):141-148.
|
[9] |
於万里, 王艳, 纪志成. 氨糖发酵过程建模与工艺参数优化研究[J]. 系统仿真学报, 2020, 32(10):1895-1902.
doi: 10.16182/j.issn1004731x.joss.20-FZ0400
|
|
YU Wanli, WANG Yan, JI Wangcheng. Study on modeling and optimization of process parameters for ammonia fermentation[J]. Journal of System Simulation, 2020, 32(10):1895-1902.
doi: 10.16182/j.issn1004731x.joss.20-FZ0400
|
[10] |
GOMEZ F R, RAJAPAKSE A D, ANNAKKAGE U D, et al. Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Transactions on Power Systems, 2011, 26:1474-1483.
doi: 10.1109/TPWRS.2010.2082575
|
[11] |
HU W, LU Z, WU S, et al. Real-time transient stability assessment in power system based on improved SVM[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(1):26-37.
doi: 10.1007/s40565-018-0453-x
|
[12] |
张林林, 胡熊伟, 李鹏, 等. 基于极限学习机的电力系统暂态稳定评估方法[J]. 上海交通大学学报, 2019, 53(6):749-756.
|
|
ZHANG Linlin, HU Xiongwei, LI Peng, et al. Power system transient stability assessment method based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6):749-756.
|
[13] |
高昆仑, 杨帅, 刘思言, 等. 基于一维卷积神经网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2019, 43(12):18-26.
|
|
GAO Kunlun, YANG Shuai, LIU Siyan, et al. Transient stability assessment for power system based on one-dimensional convolutional neural network[J]. Automation of Electric Power Systems, 2019, 43(12):18-26.
|
[14] |
邵美阳. 基于深度置信网络的电力系统暂态稳定评估[D]. 北京: 北京交通大学, 2020.
|
|
SHAO Meiyang. Transient stability assessment of power system based on deep belief network[D]. Beijing: Beijing Jiaotong University, 2020.
|
[15] |
SHUANG Wu, LE Zheng, WEI Hu, et al. Improved deep belief network and model interpretation method for power system transient stability assessment[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(1):27-37.
doi: 10.35833/MPCE.2019.000058
|
[16] |
朱乔木, 陈金富, 李弘毅, 等. 基于堆叠自动编码器的电力系统暂态稳定评估[J]. 中国电机工程学报, 2018, 38(10):2937-2946.
|
|
ZHU Qiaomu, CHEN Jinfu, LI Hongyi, et al. Transient stability assessment based on stacked autoencoders[J]. Proceedings of the CSEE, 2018, 38(10):2937-2946.
|
[17] |
LI X, YANG Z, GUO P, et al. An intelligent transient stability assessment framework with continual learning ability[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12):8131-8141.
doi: 10.1109/TII.2021.3064052
|
[18] |
胡清华, 于达仁, 谢宗霞. 基于邻域粒化和粗糙逼近的数值属性约简[J]. 软件学报, 2008(3):640-649.
|
|
HU Qinghua, YU Daren, XIE Zongxia. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of Software, 2008(3):640-649.
|
[19] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017(99):2999-3007.
|
[20] |
张文修. 粗糙集理论与方法[M]. 北京: 科学出版社, 2001.
|
|
ZHANG Wenxiu. Rough set theory and method[M]. Beijing: Science Press, 2001.
|
[21] |
MI Jusheng, WU Weizhi, ZHANG Wenxiu. Approaches to knowledge reduction based on variable precision rough set model[J]. Information Sciences, 2003, 159(3):255-272.
doi: 10.1016/j.ins.2003.07.004
|
[22] |
ZHAO Suyun, TSANG E C C, CHEN Degang. The model of fuzzy variable precision rough sets[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(2):451-467.
doi: 10.1109/TFUZZ.2009.2013204
|