电气工程学报 ›› 2022, Vol. 17 ›› Issue (4): 145-162.doi: 10.11985/2022.04.015
• 特邀专栏:电化学储能系统安全管理与运维 • 上一篇 下一篇
收稿日期:
2022-06-20
修回日期:
2022-07-16
出版日期:
2022-12-25
发布日期:
2023-02-03
作者简介:
于仲安,男,1973年生,硕士,教授。主要研究方向为锂电池管理系统和新能源技术。E-mail:yza119@126.com基金资助:
YU Zhongan(), CHEN Keyi(
), ZHANG Junling, HU Zezhou
Received:
2022-06-20
Revised:
2022-07-16
Online:
2022-12-25
Published:
2023-02-03
摘要:
锂电池技术的逐渐成熟使之广泛应用在各个行业中,如电网储能、智能家电、通信储能、新能源汽车等领域。锂电池的热管理技术是电池组延长寿命、安全运行的重要保障,锂电池热管理系统对电池的安全和稳定性起着至关重要的作用。对现有的电池散热技术进行了介绍和阐述:首先总结了电池热量的产生、传热和热量分布,其次讨论了电池散热系统中风冷、液冷、热管和相变材料等四种方式的工作原理和特点,最后结合电池散热系统的发展需求,提出未来动力电池散热系统的发展方向和可实行的技术。
中图分类号:
于仲安, 陈可怡, 张军令, 胡泽洲. 动力电池散热技术研究进展*[J]. 电气工程学报, 2022, 17(4): 145-162.
YU Zhongan, CHEN Keyi, ZHANG Junling, HU Zezhou. Research Progress of Power Battery Cooling Technology[J]. Journal of Electrical Engineering, 2022, 17(4): 145-162.
表1
锂离子电池容量在不同温度条件下的衰减总结"
作者 | 电池阴极/阳极 | 放电电压范围/深度 | 循环倍率 | 循环次数 | 温度/℃ | 容量衰减(%) |
---|---|---|---|---|---|---|
RAMADASS等[ | C/LiCoO2 | 4.2~2.0 V | C/9~C/1 | 500 | 55 | 70.56 |
25 | 22.5 | |||||
800 | 45 | 36.21 | ||||
25 | 30.63 | |||||
ZHANG等[ | C/LiFePO4 | 3.6~2.0 V | 3C | 600 | 45 | 25.6 |
25 | 14.3 | |||||
0 | 15.5 | |||||
-10 | 20.3 | |||||
LIU等[ | C/LiFePO4 | 90%DOD | C/2 | 757 | 60 | 20.1 |
2 628 | 15 | 7.5 | ||||
50%DOD | C/2 | 1 376 | 45 | 22.1 | ||
JAGUEMONT等[ | C/LiFeMnPO4 | 60%DOD | 1C | 170 | 25 | 7 |
-20 | 20.8 | |||||
ZHENG等[ | C/LiFePO4 | 70%DOD | 1/3C | 100 | -10 | 12.77 |
100%DOD | 1C | 20 | 30.69 | |||
40 | 29.33 |
表2
风冷系统的进展总结"
作者 | 冷却形式 | 电池材料 | 进风口速度/(m/s) | 最大放电倍率 | 环境温度/℃ | 最大温升/℃ | 最大温差/℃ |
---|---|---|---|---|---|---|---|
FAN等[ | 顺排 | 镍钴锰酸锂 电池 | 0.6~1 | 2C | 20 | 24 | 17 |
交错 | 27 | 11.5 | |||||
交叉 | 28 | 16 | |||||
FAN等[ | 串行通风 | 磷酸铁锂电池 | 5 | 1.5C | 21.8 | 2 | 1 |
CHEN等[ | 模型1 | 磷酸铁锂电池 | 0.015 | 5C | 25 | 38.25 | 9.7 |
模型2 | 34.35 | 5.3 | |||||
模型3 | 42.75 | 14.5 | |||||
模型4 | 35.65 | 5.8 | |||||
模型5 | 35.25 | 8.3 | |||||
模型6 | 34.25 | 5.1 | |||||
模型7 | 35.25 | 3.5 | |||||
模型8 | 38.25 | 9.5 | |||||
模型9 | 34.05 | 3.7 |
表3
不同温度下水的导热系数"
温度/K | 导热系数/[W/(m2·K)] | 温度/K | 导热系数/[W/(m2·K)] |
---|---|---|---|
275 | 0.560 6 | 325 | 0.644 5 |
280 | 0.571 5 | 330 | 0.649 9 |
285 | 0.581 8 | 335 | 0.654 6 |
290 | 0.591 7 | 340 | 0.658 8 |
295 | 0.600 9 | 345 | 0.662 4 |
300 | 0.609 6 | 350 | 0.665 5 |
305 | 0.617 6 | 355 | 0.668 0 |
310 | 0.625 2 | 360 | 0.670 0 |
315 | 0.632 2 | 365 | 0.671 4 |
320 | 0.638 7 | 370 | 0.672 3 |
表5
PCM耦合冷却系统综合比较"
作者 | PCM材料 | 耦合冷却系统 | 电池材料 | 最大放电率 | 环境温度/℃ | 最大温升/℃ | 最大温差/℃ |
---|---|---|---|---|---|---|---|
HE等[ | 石蜡/膨胀石墨/泡沫铜 | 风冷 | 钴酸锂电池 | 5C | 25 | 23.0 | 3.9 |
HUANG等[ | 石蜡/膨胀石墨 | 风冷 | 镍钴锰锂电池 | 3C | 25 | 33.24 | 4.74 |
QIN等[ | 石蜡/泡沫铝 | 风冷 | 18650锂电池 | 4C | 25 | 17 | 9.5 |
HEKMAT等[ | 聚乙二醇1000 | 液冷 | 锂电池 | 0.9C | 28 | 2 | 0.6 |
KONG等[ | 石蜡 | 液冷 | 镍钴锰锂电池 | 3C | 30 | 11.1 | 4 |
PING等[ | 膨胀石墨 | 液冷 | 磷酸铁锂电池 | 3C | 40 | 7.6 | 4.5 |
ZHANG等[ | 石蜡/泡沫铜 | 热管 | 磷酸铁锂电池 | 5C | 30 | 18.8 | 4 |
JIANG等[ | 石蜡/膨胀石墨 | 热管 | 磷酸铁锂电池 | 1.92C | 40 | 7.9 | 2.6 |
WANG等[ | 石蜡 | 热管 | — | 30 W | 25 | 20.56 | — |
[1] | 李正烁, 孙宏斌, 郭庆来, 等. 计及碳排放的输电网侧“风-车协调”研究[J]. 中国电机工程学报, 2012, 32(10):41-48. |
LI Zhengshuo, SUN Hongbin, GUO Qinglai, et al. Research on “wind-vehicle coordination” on the transmission grid side considering carbon emissions[J]. Proceedings of the CSEE, 2012, 32(10):41-48. | |
[2] | 孟欣. 纯电动汽车的应用及发展概述[J]. 科技广场, 2010(7):147-149. |
MENG Xin. An overview of the application and development of pure electric vehicles[J]. Science and Technology Plaza, 2010(7):147-149. | |
[3] |
SASAKI T, UKYO Y, NOVAK P. Memory effect in a lithium-ion battery[J]. Nature Materials, 2013, 12(6):569-575.
doi: 10.1038/nmat3623 pmid: 23584142 |
[4] | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy & Environmental Science, 2011, 4:3243-3262. |
[5] | 蔡敏怡, 张娥, 林靖, 等. 串联锂离子电池组均衡拓扑综述[J]. 中国电机工程学报, 2021, 41(15):5294-5311. |
CAI Minyi, ZHANG E, LIN Jing, et al. A review of the equilibrium topology of lithium-ion battery packs in series[J]. Proceedings of the CSEE, 2021, 41(15):5294-5311. | |
[6] |
ZHANG S S, XU K, JOW T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1):137-140.
doi: 10.1016/S0378-7753(02)00618-3 |
[7] | PESARAN A. Battery thermal management in EVs and HEVs:Issues and solutions[J]. Battery Man, 2001, 43(5):34-49. |
[8] |
RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis[J]. Journal of Power Sources, 2002, 112(2):614-620.
doi: 10.1016/S0378-7753(02)00473-1 |
[9] |
BANDHAUER T, GARIMELLA S, FULLER T. A critical review of thermal issues in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2011, 158(3):R1.
doi: 10.1149/1.3515880 |
[10] |
YANG Z, PATIL D, FAHIMI B. Online estimation of capacity fade and power fade of lithium-ion batteries based on input-output response technique[J]. IEEE Transactions on Transportation Electrification, 2017, 4(1):147-156.
doi: 10.1109/TTE.2017.2775801 |
[11] | ZHANG Yancheng, WANG Chaoyang, TANG Xidong. Cycling degradation of an automotive LiFePO4lithium-ion battery[J]. Journal of Power Sources, 2011, 196(3):0378-7753. |
[12] |
LIU P, JOHN W, JOCELYN H, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of The Electrochemical Society, 2010, 157(4):A499.
doi: 10.1149/1.3294790 |
[13] |
JAGUEMONT J, BOULON L, VENET P, et al. Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):4328-4343.
doi: 10.1109/TVT.2015.2473841 |
[14] |
ZHENG Yong, HE Yanbing, QIAN Kun, et al. Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature[J]. Ionics, 2017, 23:1967-1978.
doi: 10.1007/s11581-017-2032-y |
[15] |
WU Weixiong, WANG Shuangfeng, CHEN Kai, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182:262-281.
doi: 10.1016/j.enconman.2018.12.051 |
[16] | COSLEY R M, GARCIA M P. Battery thermal management system[C]// INTELEC 2004. 26th Annual International Telecommunications Energy Conference, 2004:38-45. |
[17] |
KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149:192-212.
doi: 10.1016/j.applthermaleng.2018.12.020 |
[18] |
WANG Zichen, DU Changqing. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 139:110685.
doi: 10.1016/j.rser.2020.110685 |
[19] | PRAJAPATI S, UPADHYAY Y, KUMAR Y, et al. Investigation of thermal management system of a lithium-ion battery in electric vehicle[J]. Materialstoday:Proceedings, 2022, 56(5):A1-A6. |
[20] |
XIA Guodong, CAO Lei, BI Guanglong. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367:90-105.
doi: 10.1016/j.jpowsour.2017.09.046 |
[21] | 刘晓东. 高倍率软包锂离子电池产热模型及热管理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LIU Xiaodong. Research on heat production model and thermal management of high-rate soft-pack lithium-ion battery[D]. Harbin: Harbin Institute of Technology, 2021. | |
[22] | 姜贵文, 李敬会, 黄菊花, 等. 相变材料和液冷耦合散热的锂电池热管理研究[J]. 电源技术, 2018, 42(10):1462-1465,1485. |
JIANG Guiwen, LI Jinghui, HUANG Hua, et al. Thermal management of lithium battery with phase change material and liquid-cooling coupling heat dissipation[J]. Chinese Journal of Power Sources, 2018, 42(10):1462-1465,1485. | |
[23] |
BARCELLONA S, PIEGARI L. Integrated electro-thermal model for pouch lithium ion batteries[J]. Mathematics and Computers in Simulation, 2020, 183:5-19.
doi: 10.1016/j.matcom.2020.03.010 |
[24] | PESARAN A, KIM G H. Battery thermal management system design modeling[R]. National Renewable Energy Lab.(NREL),Golden,CO (United States), 2006. |
[25] |
CHIEW J, CHIN C S, TOH W D, et al. A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 147:450-463.
doi: 10.1016/j.applthermaleng.2018.10.108 |
[26] | LI Junqiu, SUN Danni, JIN Xin, et al. Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation[J]. Applied Energy, 2019, 254:113574.1-113574.12. |
[27] |
LIANG Jialin, GAN Yunhua, SONG Weifeng, et al. Thermal-electrochemical simulation of electrochemical characteristics and temperature difference for a battery module under two-stage fast charging[J]. The Journal of Energy Storage, 2020, 29:101307.
doi: 10.1016/j.est.2020.101307 |
[28] |
CHIN C S, GAO Zuchang, ZHANG Caizhi. Comprehensive electro-thermal model of 26650 lithium battery for discharge cycle under parametric and temperature variations[J]. The Journal of Energy Storage, 2020, 28(1):101222.
doi: 10.1016/j.est.2020.101222 |
[29] |
XIE Yi, ZHENG Jintao, HU Xiaosong, et al. An improved resistance-based thermal model for prismatic lithium-ion battery charging[J]. Applied Thermal Engineering, 2020, 180(4):115794.
doi: 10.1016/j.applthermaleng.2020.115794 |
[30] |
JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2):321-329.
doi: 10.1016/S0378-7753(02)00194-5 |
[31] |
KIM G H, PESARAN A, SPOTNITZ R. Three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2):476-489.
doi: 10.1016/j.jpowsour.2007.04.018 |
[32] | 眭艳辉, 王文, 夏保佳, 等. 混合动力汽车动力电池组散热特性实验研究[J]. 制冷技术, 2009, 29(2):16-21. |
SUI Yanhui, WANG Wen, XIA Baojia, et al. Experimental research on heat dissipation characteristics of hybrid electric vehicle power battery pack[J]. Refrigeration Technology, 2009, 29(2):16-21. | |
[33] |
FAN Yuqian, BAO Yun, LING Chen, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155:96-109.
doi: 10.1016/j.applthermaleng.2019.03.157 |
[34] |
HE Fan, LI Xuesong, MA Lin. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72:622-629.
doi: 10.1016/j.ijheatmasstransfer.2014.01.038 |
[35] |
CHEN Kai, WU Weixiong, YUAN Fang, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167:781-790.
doi: 10.1016/j.energy.2018.11.011 |
[36] | 眭艳辉. 混合动力车用镍氢电池组散热结构研究[D]. 上海: 上海交通大学, 2009. |
SUI Yanhui. Research on heat dissipation structure of nickel metal hydride battery pack for hybrid electric vehicle[D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
[37] | PESARAN A A. Battery thermal management in EVs and HEVs:Issues and solutions[C]// Adv. Automotive Battery Conf,Las Vegas,Nevada,Feb. 6-8, 2001. |
[38] | HIRANO H, TAJIMA T, HASEGAWA T, et al. Boiling liquid battery cooling for electric vehicle[C]// 2014 IEEE Conference and Expo. Transportation Electrification,Asia-Pacific (ITEC Asia-Pacific)August 31-September 03,2014,Beijing,China. IEEE, 2014:1-4. |
[39] | GILS R W V, DANILOV D, NOTTEN P H L, et al. Battery thermal management by boiling heat-transfer[J]. Energy Conversion & Management, 2014, 79:9-17. |
[40] | RONNING J J, BROWN R K. Battery cooling apparatus for electric vehicle:US,20140038010[P]. 2014-02-06. |
[41] |
HUO Yutao, RAO Zhonghao, LIU Xinjian, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89:387-395.
doi: 10.1016/j.enconman.2014.10.015 |
[42] |
JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245:644-655.
doi: 10.1016/j.jpowsour.2013.06.114 |
[43] |
JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113:1786-1794.
doi: 10.1016/j.apenergy.2013.07.013 |
[44] |
TETE P R, GUPTA M M, JOSHI S S. Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct[J]. Journal of Energy Storage, 2022, 48:104041.
doi: 10.1016/j.est.2022.104041 |
[45] |
TANG Xingwang, GUO Qin, LI Ming, et al. Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning[J]. Journal of Power Sources, 2021, 494(1):229727.
doi: 10.1016/j.jpowsour.2021.229727 |
[46] | KRÜGER I L, SCHMITZ G. Energy consumption of battery cooling in hybrid electric vehicles[C]// International Refrigeration and Air Conditioning Conference at Purdue, July 16-19,2012, 2334:1-10. |
[47] |
XIE Lin, HUANG Yingxia, LAI Huanxin. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module[J]. Applied Thermal Engineering, 2020, 178:115599.
doi: 10.1016/j.applthermaleng.2020.115599 |
[48] |
LIU Zhengyu, WANG Hao, YANG Chao, et al. Simulation study of lithium-ion battery thermal management system based on a variable flow velocity method with liquid metal[J]. Applied Thermal Engineering, 2020, 179(3):115578.
doi: 10.1016/j.applthermaleng.2020.115578 |
[49] | 张国庆, 吴忠杰, 饶中浩, 等. 动力电池热管冷却效果实验[J]. 化工进展, 2009, 28(7):1165-1168,1174. |
ZHANG Guoqing, WU Zhongjie, RAO Zhonghao, et al. Experiment on cooling effect of power battery heat pipe[J]. Progress in Chemical Industry, 2009, 28(7):1165-1168,1174. | |
[50] | 张文明. 重力热管抽油杆室内实验研究[D]. 大庆: 大庆石油学院, 2008. |
ZHANG Wenming. Indoor experiment research of gravity heat pipe sucker rod[D]. Daqing: Daqing Petroleum Institute, 2008. | |
[51] |
ABDELKAREEM M A, MAGHRABIE H M, SAYED E T, et al. Heat pipe-based waste heat recovery systems:Background and applications[J]. Thermal Science and Engineering Progress, 2022, 29:101221.
doi: 10.1016/j.tsep.2022.101221 |
[52] | 钟名湖. 新型双向阀门可控热导热管研究[J]. 现代雷达, 2012, 34(1):82-85. |
ZHONG Minghu. Research on a new type of two-way valve controllable thermal heat pipe[J]. Modern Radar, 2012, 34(1):82-85. | |
[53] | 陈彦泽, 喻建良, 丁信伟. 热管技术及其应用[J]. 现代化工, 2003(4):17-19,28. |
CHEN Yanze, YU Jianliang, DING Xinwei. Heat pipe technology and its application[J]. Modern Chemical Industry, 2003(4):17-19,28. | |
[54] | 曹丽召. 重力热管流动与传热特性的数值模拟[D]. 北京: 中国石油大学, 2009. |
CAO Lizhao. Numerical simulation of flow and heat transfer characteristics of gravity heat pipes[D]. Beijing: China University of Petroleum, 2009. | |
[55] | 马永昌. 热管技术的原理应用与发展[C]// 2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集, 2008:46. |
MA Yongchang. The principle application and development of heat pipe technology[C]// 2008 Abstracts of the 11th Annual Academic Conference of the Power Electronics Society of China Electrotechnical Society, 2008:46. | |
[56] | 王春娟. 烧结式热管吸附床的结构设计及实验研究[D]. 大连: 大连海事大学, 2011. |
WANG Chunjuan. Structural design and experimental research of sintered heat pipe adsorption bed[D]. Dalian: Dalian Maritime University, 2011. | |
[57] | 于涛. 重力热管的制造及传热性能测试[D]. 山东: 山东大学, 2008. |
YU Tao. Manufacture and heat transfer performance test of gravity heat pipe[D]. Shandong: Shandong University, 2008. | |
[58] | 郑攀. 应用于太阳能空调的中温热管研究[D]. 武汉: 华中科技大学, 2008. |
ZHENG Pan. Research on medium temperature heat pipe applied to solar air conditioner[D]. Wuhan: Huazhong University of Science and Technology, 2008. | |
[59] |
TRAN T H, HARMAND S, DESMET B, et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. Applied Thermal Engineering, 2014, 63:551-558.
doi: 10.1016/j.applthermaleng.2013.11.048 |
[60] | 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013. |
RAO Zhonghao. Research on thermal management of power battery based on solid-liquid phase change heat transfer medium[D]. Guangzhou: South China University of Technology, 2013. | |
[61] |
MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25:635-657.
doi: 10.1016/j.applthermaleng.2004.07.010 |
[62] |
汤勇, 唐恒, 万珍平, 等. 超薄微热管的研究现状及发展趋势[J]. 机械工程学报, 2017, 53(20):131-144.
doi: 10.3901/JME.2017.20.131 |
TANG Yong, TANG Heng, WAN Zhenping, et al. Research status and development trend of ultra-thin micro heat pipes[J]. Journal of Mechanical Engineering, 2017, 53(20):131-144.
doi: 10.3901/JME.2017.20.131 |
|
[63] | 林梓荣, 汪双凤, 吴小辉. 脉动热管技术研究进展[J]. 化工进展, 2008(10):1526-1532. |
LIN Zirong, WANG Shuangfeng, WU Xiaohui. Research progress of pulsating heat pipe technology[J]. Progress in Chemical Industry, 2008(10):1526-1532. | |
[64] | JAGUEMONT J, OMAR N, BOSSCHE P, et al. Phase-change materials (PCM) for automotive applications:A review[J]. Applied Thermal Engineering:Design, Processes,Equipment,Economics, 2018, 132:308-320. |
[65] |
HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM,metal foam,fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28:101235.
doi: 10.1016/j.est.2020.101235 |
[66] | ZHANG Jiangyun, LI Xinxi, ZHANG Guoqing, et al. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system[J]. Power Sources, 2020(480):229116. |
[67] |
LING Ziye, LI Suimin, CAI Chuyue, et al. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Applied Thermal Engineering, 2021, 193:117002.
doi: 10.1016/j.applthermaleng.2021.117002 |
[68] |
WU Niuniu, LIU Lijie, YANG Zhiwei, et al. Design of eutectic hydrated salt composite phase change material with cement for thermal energy regulation of buildings[J]. Materials, 2021, 14(1):139.
doi: 10.3390/ma14010139 |
[69] | 次恩达, 王会, 李晓卿, 等. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1):30-37. |
CI Enda, WANG Hui, LI Xiaoqing, et al. Preparation and performance enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic salt/expanded graphite composite phase change material[J]. Energy Storage Science and Technology, 2022, 11(1):30-37. | |
[70] | QIN Peng, LIAO Mengran, ZHANG Danfeng, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material[J]. Energy Conversion & Management, 2019, 195:1371-1381. |
[71] |
HE Jieshan, YANG Xiaoqing, ZHANG Guoqing. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering, 2019, 148:984-991.
doi: 10.1016/j.applthermaleng.2018.11.100 |
[72] |
HUANG Hongfei, WANG Hu, GU Jinqing, et al. High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries[J]. Energy Conversion and Management, 2019, 190:54-72.
doi: 10.1016/j.enconman.2019.04.013 |
[73] |
HEKMAT S, MOLAEIMANESH G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes:An experimental investigation[J]. Applied Thermal Engineering, 2019, 166:114759.
doi: 10.1016/j.applthermaleng.2019.114759 |
[74] | KONG Depeng, PENG Rongqi, PING Ping, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management, 2019:112280. |
[75] | PING Ping, ZHANG Yue, KONG Depeng, et al. Investigation on battery thermal management system combining phase changed material and liquid cooling consid- ering non-uniform heat generation of battery[J]. Energy Storage, 2021(36):102448. |
[76] |
ZHANG Wencan, QIU Jieyu, YIN Xiuxing, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2019, 165:114571.
doi: 10.1016/j.applthermaleng.2019.114571 |
[77] |
JIANG Zhiyuan, QU Zhiguo. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle:A comprehensive numerical study[J]. Applied Energy, 2019, 242:378-392.
doi: 10.1016/j.apenergy.2019.03.043 |
[78] |
WANG Qingchao, RAO Zhonghao, HUO Yutao, et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences, 2016, 102:9-16.
doi: 10.1016/j.ijthermalsci.2015.11.005 |
[79] |
LIU Huaqiang, WEI Zhongbao, HE Weidong, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J]. Energy Conversion and Management, 2017, 150:304-330.
doi: 10.1016/j.enconman.2017.08.016 |
[1] | 李彦梅, 刘惠汉, 张朝龙, 罗来劲. 基于双高斯模型的锂电池剩余使用寿命预测方法*[J]. 电气工程学报, 2022, 17(4): 32-40. |
[2] | 刘王泽宇, 李青, 庾甜甜, 熊锦晨, 张洪源, 董明, 任明. 锂离子电池过放电状态的阻抗特性研究*[J]. 电气工程学报, 2022, 17(4): 51-60. |
[3] | 王功全, 孔得朋, 平平, 吕宏鹏. 锂离子电池热失控模型综述*[J]. 电气工程学报, 2022, 17(4): 61-71. |
[4] | 陈银, 肖如, 崔怡琳, 陈明毅. 储能电站锂离子电池火灾早期预警与抑制技术研究综述*[J]. 电气工程学报, 2022, 17(4): 72-87. |
[5] | 张宇鑫, 武建华, 郑林锋, 叶涛. 基于数字孪生的锂离子电池管理系统设计分析*[J]. 电气工程学报, 2022, 17(4): 103-112. |
[6] | 徐彬翔, 郑林锋, 黄乙恒, 肖志能, 王新月. 基于改进最小二乘支持向量机的锂离子电池健康状态快速估计方法*[J]. 电气工程学报, 2022, 17(4): 11-19. |
[7] | 刘家豪, 马晴雯. 在浸入式冷却中添加新型翅片的混合电池热管理系统[J]. 电气工程学报, 2022, 17(4): 113-121. |
[8] | 方德宇, 楚潇, 刘涛, 李俊夫. 基于数据-模型驱动的锂离子电池健康状态估计*[J]. 电气工程学报, 2022, 17(4): 20-31. |
[9] | 齐四清, 苏林华, 范新宇, 姜楠, 王鹏飞. 锂离子电池正极材料低温性能衰退机理研究*[J]. 电气工程学报, 2022, 17(3): 19-29. |
[10] | 陈鑫阳, 姚天浩, 王红康. 锂/钠离子电池锡锑合金负极材料改性的研究进展[J]. 电气工程学报, 2022, 17(3): 2-11. |
[11] | 党月懋, 张雪纯, 徐楚奕, 江全元. 基于温度变化率曲线的锂离子电池健康状态评估算法*[J]. 电气工程学报, 2022, 17(3): 58-65. |
[12] | 巫春玲, 程琰清, 徐先峰, 孟锦豪, 谢美美. 基于蒙特卡洛和SH-AUKF算法的锂电池SOC估计*[J]. 电气工程学报, 2022, 17(3): 66-75. |
[13] | 张博钊, 苟斌, 徐燕璋. 循环使用与储存条件对石墨/LiCoO2电池寿命的影响分析*[J]. 电气工程学报, 2022, 17(2): 38-48. |
[14] | 李长龙, 崔纳新, 常龙, 张承慧. 风冷并联电池模组的建模方法与不一致性研究[J]. 机械工程学报, 2022, 58(12): 168-179. |
[15] | 王雅博, 朱信霖, 李雪强, 刘圣春, 李海龙, 熊瑞. 电化学储能系统电池柜散热的影响因素分析*[J]. 电气工程学报, 2022, 17(1): 225-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||