[1] |
SAW L H, POON H M, THIAM H S. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy, 2018(223):146-158.
|
[2] |
刘霏霏, 鲍荣清, 程贤福, 等. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6):2269-2282.
|
|
LIU Feifei, BAO Rongqing, CHENG Xianfu, et al. Review on heat dissipation methods of lithium-ion power battery for vehicles under service condition[J]. Energy Storage Science and Technology, 2021, 10(6):2269-2282.
|
[3] |
FENG Xuning, XU Chengshan, HE Xiangming, et al. Mechanisms for the evolution of cell variations within a Li NixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity[J]. Journal of Cleaner Production, 2018(205):447-462.
|
[4] |
贺元骅, 余兴科, 樊榕, 等. 动力锂离子电池热管理技术研究进展[J]. 电池, 2022, 52(3):337-341.
|
|
HE Yuanhua, YU Xingke, FAN Rong, et al. Research progress in thermal management technology of power Li-ion battery[J]. Battery Bimonthly, 2022, 52(3):337-341.
|
[5] |
KALAF O, SOLYALI D, ASMAEL M, et al. Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles:A review[J]. International Journal of Energy Research, 2020:6268-6517.
|
[6] |
LI Yang, ZHOU Zhifu, HU Leiming, et al. Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions[J]. Case Studies in Thermal Engineering, 2022(34):102034.
|
[7] |
LIU Jiahao, FAN Yining, XIE Qimiao. Feasibility study of a novel oil-immersed battery cooling system:Experiments and theoretical analysis[J]. Applied Thermal Engineering, 2022(208):1359-4311.
|
[8] |
FU J, XU X, LI R. Battery module thermal management based on liquid cold plate with heat transfer enhanced fin[J]. International Journal of Energy Research, 2019, 43(9):4312-4321.
doi: 10.1002/er.4556
|
[9] |
温达旸, 赵荣超, 叶鸣, 等. 基于非均匀翅片液冷板的电池热管理性能研究[J]. 电源技术, 2021, 45(10):1264-1268.
|
|
WEN Dayang, ZHAO Rongchao, YE Ming, et al. Study of batteries thermal management performance based on liquid cooling plate with non-uniform pin fins[J]. Journal of Power Sources, 2021, 45(10):1264-1268.
|
[10] |
ZHENG N, FAN R, SUN Z, et al. Thermal management performance of a fin-enhanced phase change material system for the lithium-ion battery[J]. International Journal of Energy Research, 2020(9):7617-7629.
|
[11] |
EL WAKIL N, CHERECHES N C, PADET J, et al. Numerical study of heat transfer and fluid flow in a power transformer[J]. International Journal of Thermal Sciences, 2006, 45(6):615-626.
doi: 10.1016/j.ijthermalsci.2005.09.002
|
[12] |
ZHANG F, YI M, WANG P, et al. Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack[J]. Energy Storage Materials, 2021(44):102781.
|
[13] |
SAW L H, YE Y, TAY A A O. Electro-thermal analysis and integration issues of lithium-ion battery for electric vehicles[J]. Applied Energy, 131, 2014(131):97-107.
doi: 10.1016/j.apenergy.2014.06.016
|
[14] |
LI Y, ZHOU Z, ZHAO J, et al. Three-dimensional thermal simulations of 18650 lithium-ion batteries cooled by different schemes under high rate discharging and external shorting conditions[J]. Energies, 2021(14):1-20.
|
[15] |
SURESH P M, SEO J H, LEE M Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021(229):113715.
|
[16] |
TRIMBAKE A, SINGH C P, KRISHNAN S. Mineral oil immersion cooling of lithium-ion batteries:An experimental investigation[J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(2):021007.
doi: 10.1115/1.4052094
|
[17] |
WENG J, HE Y, OUYANG D, et al. Thermal performance of PCM and branch-structured fins for cylindrical power battery in a high-temperature environment[J]. Energy Conversion and Management, 2019, 200:112106.
doi: 10.1016/j.enconman.2019.112106
|
[18] |
MOHAMMADIAN S K, HE Y L, ZHANG Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes[J]. Journal of Power Sources, 2015(293):458-466.
|
[19] |
汪缤缤, 胡绪照. 基于液冷的圆柱锂离子电池冷却器的研究[J]. 萍乡学院学报, 2020, 37(3):38-43.
|
|
WANG Binbin, HU Xuzhao. Research on cylindrical lithium-ion battery cooler based on liquid cooling[J]. Journal of Pingxiang University, 2020, 37(3):38-43.
|
[20] |
HUANG Y, WANG S, LU Y, et al. Study on a liquid cooled battery thermal management system pertaining to the transient regime[J]. Applied Thermal Engineering, 2020(180):115793.
|
[21] |
MOKASHI I, KHAN S A, ABDULLAH N A, et al. Maximum temperature analysis in a Li-ion battery pack cooled by different fluids[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(6):2555-2571.
doi: 10.1007/s10973-020-10063-9
|
[22] |
李平, 安富强, 张剑波, 等. 电动汽车用锂离子电池的温度敏感性研究综述[J]. 汽车安全与节能学报, 2014, 5(3):224-237.
|
|
LI Ping, AN Fuqiang, ZHANG Jianbo, et al. Temperature sensitivity of lithium-ion battery:A review[J]. Journal of Automotive Safety and Energy, 2014, 5(3):224-237.
|
[23] |
DUBEY P, PULUGUNDLA G, SROUJI A K. Direct comparison of immersion and cold plate based cooling for automotive Li-ion battery modules[J]. Energies, 2021, 14(5):1259.
doi: 10.3390/en14051259
|