电气工程学报 ›› 2023, Vol. 18 ›› Issue (1): 1-13.doi: 10.11985/2023.01.001
• 电机与电器 • 下一篇
收稿日期:
2022-05-18
修回日期:
2022-07-22
出版日期:
2023-03-25
发布日期:
2023-04-19
通讯作者:
李莎莎,女,1998年生,硕士研究生。主要研究方向为电力设备智能感知与健康管理。E-mail:2973436393@qq.com
作者简介:
石颉,男,1978年生,博士,研究员。主要研究方向为电力设备智能感知与健康管理。E-mail:17751455752@163.com
SHI Jie(), LI Shasha(
), SHEN Haifeng
Received:
2022-05-18
Revised:
2022-07-22
Online:
2023-03-25
Published:
2023-04-19
摘要:
作为整个电力系统最重要的环节之一,感应电机有着不可替代的作用。由于运行工况十分复杂,感应电机在使用过程中会出现各种类型的故障。为了保证电机正常运行,对电机早期故障进行诊断和监测显得尤为重要。考虑未来研究的需要,针对感应电机最常见的轴承故障、定子故障和转子故障三类故障,首先总结了每种故障常用诊断方法的优势及其局限性,其次基于最常用的振动信号、电机电流信号、声信号等特征分析技术,重点论述了当前电机故障特征提取的主流方法,对各常用故障诊断方法及其改进策略做了归纳和总结,对国内外研究现状进行了全面的论述和分析,总结了各种故障诊断方法的适用场景,并对该领域未来的研究方向进行了展望,旨在给未来的研究者提供依据和思路。
中图分类号:
石颉, 李莎莎, 申海锋. 笼型感应电机故障诊断技术综述[J]. 电气工程学报, 2023, 18(1): 1-13.
SHI Jie, LI Shasha, SHEN Haifeng. Review of Induction Motor Fault Diagnosis Technology[J]. Journal of Electrical Engineering, 2023, 18(1): 1-13.
表2
电机特征提取常用方法及其改进"
方法 | 原理 | 优势 | 文献 | 局限 | 改进 | |
---|---|---|---|---|---|---|
小波 分解 | 通过对母小波进行缩放拉伸拟合原始波形 | 在时间上有很高的分辨能力 | [ | 小波基确定和分解级别的确定需要人为干预,参数选择不当会丢失有用信息;不能自适应调整波长 | 经验小波 | 自适应检测不同模式信号; |
离散小波 | 计算速度更快; | |||||
连续小波 | 诊断精度更高; | |||||
小波包分解 | 根据信号的特征频率选择合适的频带,能更好观察每个频带特征 | |||||
经验模态分解 | 直接提取各种内在时间尺度相关能量,生成一组固有模态分量(IMF) | 自适应处理技术,信号根据其固有特性进行分解,适用于复杂信号 | [ | 容易出现模态混叠问题 | 集合经验模态 分解(EEMD) | 添加有限幅值的白噪声,有助于频率尺度的自然分离,避免模态混叠问题 |
互补集合经验 模态分解(CEEMD) | 筛选信息,丢弃不需要的信息成分,隔离相关信息 | |||||
变分模态分解 | 基于维纳滤波和希尔伯特变换的自适应递归算法 | 适用于输入信号存在噪声问题,对噪声鲁棒性强 | [ | 分解参数需要根据信号特征设置,需要大量经验 | 自适应变分 模态分解 | 自适应获取最佳分解参数,可实现多故障分类和识别的准确性、稳定性 |
傅里叶变换 | 时域信号经过傅里叶变换到频谱图,通过检测频谱图判断是否发生故障 | 操作简单、计算时间短 | [ | 频率分辨率有限、频谱泄漏和低噪声容限,不适用于非平稳信号 | 短时傅里叶 变换(STFT) | 能在速度变化的情况下监测信号,克服傅里叶变换不适用于非平稳信号的缺点 |
多重信号分类 | 基于信号的谐波分解,在分解中可以识别噪声 | 对于短时信号具备高频率分辨能力 | [ | 需要信号成分数量的先验知识,可能会产生杂散频率而导致错误解释 | Gabor表示法 | 具有更高的噪声容限、更好的分辨率,不会产生杂散频率,信号频谱的质量更好 |
希尔伯特变换 | 在选择区域,分析该区域是否有故障相关的症状 | 避免加权窗口选择问题 | [ | 适用于转子断条故障,对其他类型故障不是十分有效,不适用于非平稳信号 | 希尔伯特-黄 变换(HHT) | 能够有效分析非平稳信号 |
[1] | 魏闻达. 三相异步电机转子故障分析与诊断方法研究[D]. 武汉: 华中科技大学, 2015. |
WEI Wenda. Analysis and diagnosis of three-phase induction motor rotor faults[D]. Wuhan: Huazhong University of Science & Technology, 2015. | |
[2] | 丁石川, 厉雪衣, 杭俊, 等. 深度学习理论及其在电机故障诊断中的研究现状与展望[J]. 电力系统保护与控制, 2020, 48(8):172-187. |
DING Shichuan, LI Xueyi, HANG Jun, et al. Deep learning theory and its application to fault diagnosis of an electric machine[J]. Power System Protection and Control, 2020, 48(8):172-187. | |
[3] | 魏云冰, 李留杰. 异步电动机定子故障诊断方法综述[J]. 郑州轻工业学院学报, 2008, 23(4):104-108. |
WEI Yunbing, LI Liujie. Review of diagnosis methods in the stator fault of asynchronous motors[J]. Journal of Zhengzhou University of Light Industry, 2008, 23(4):104-108. | |
[4] |
NANDI S, TOLIYAT H A, LI X. Condition monitoring and fault diagnosis of electrical motors:A review[J]. IEEE Transactions on Energy Conversion, 2005, 20(4):719-729.
doi: 10.1109/TEC.2005.847955 |
[5] | QIAO H, HE Z, ZHANG Z, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble[J]. Mechanical Systems & Signal Processing, 2007, 21(2):688-705. |
[6] | 卞皓, 王晓琳, 邓智泉. 基于定子电流的无刷直流电机轴承故障诊断[J]. 南京航空航天大学学报, 2020, 52(2):224-231. |
BIAN Hao, WANG Xiaolin, DENG Zhiquan. Bearing fault detection for brushless DC motors based on stator current[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2):224-231. | |
[7] | 姚远, 李叶松, 雷力, 等. 基于电机驱动系统自传感的机械故障诊断研究综述[J]. 电工技术学报, 2022, 37(12):2936-2948. |
YAO Yuan, LI Yesong, LEI Li, et al. A research review on application of motor drive system self-sensing in mechanical fault diagnosis[J]. Transactions of China Electrotechnical Society, 2022, 37(12):2936-2948. | |
[8] | 齐咏生, 樊佶, 李永亭, 等. 基于增强型形态学滤波的风电机组轴承故障诊断方法[J]. 振动与冲击, 2021, 40(4):212-220. |
QI Yongsheng, FAN Ji, LI Yongting, et al. A fault diagnosis method of wind turbine bearings based on an enhanced morphological filter[J]. Journal of Vibration and Shock, 2021, 40(4):212-220. | |
[9] | 郝如江, 卢文秀, 褚福磊. 声发射检测技术用于滚动轴承故障诊断的研究综述[J]. 振动与冲击, 2008, 27(3):75-79,181. |
HAO Rujiang, LU Wenxiu, CHU Fulei. Review of diagnosis of rolling element bearings defaults by means of acoustic emission technique[J]. Journal of Vibration and Shock, 2008, 27(3):75-79,181. | |
[10] | 孙鹏冲. 基于谐波小波和加速度包络的城轨列车轴承故障诊断研究[D]. 北京: 北京交通大学, 2012. |
SUN Pengchong. Bearing fault diagnosis of urban rail train based on harmonic wavelet and acceleration envelope[D]. Beijing: Beijing Jiaotong University, 2012. | |
[11] | 方瑞明, 郑力新, 马宏忠, 等. 基于MCSA和SVM的异步电机转子故障诊断[J]. 仪器仪表学报, 2007(2):252-257. |
FANG Ruiming, ZHENG Lixin, MA Hongzhong, et al. Fault diagnosis for rotor of induction machine based on MCSA and SVM[J]. Chinese Journal of Scientific Instrument, 2007(2):252-257. | |
[12] | 李青松. 基于定子电流分析的机车牵引电机轴承故障诊断[D]. 北京: 北京交通大学, 2011. |
LI Qingsong. Locomtive motor bearing fault detection via the analysis of the stator current[D]. Beijing: Beijing Jiaotong University, 2011. | |
[13] | 侯新国, 吴正国, 夏立, 等. 基于Park矢量模信号小波分解的感应电机轴承故障诊断方法[J]. 中国电机工程学报, 2005, 25(14):115-119,157. |
HOU Xinguo, WU Zhengguo, XIA Li, et al. Bearing fault diagnosis method of induction motor via wavelet decomposition of Park’s vector modulus signal[J]. Proceedings of the CSEE, 2005, 25(14):115-119,157. | |
[14] | 朱文龙, 杨家伟, 关照议, 等. 牵引电机轴承故障诊断技术综述[J]. 控制与信息技术, 2021(5):12-19. |
ZHU Wenlong, YANG Jiawei, GUAN Zhaoyi, et al. Overview of traction motor bearing fault diagnosis technology[J]. Control and Information Technology, 2021(5):12-19. | |
[15] | 杨珊. 基于异常声音的货运列车滚动轴承故障诊断方法研究[D]. 长沙: 中南大学, 2012. |
YANG Shan. Research on fault diagnosis method of freight train rolling bearing based on abnormal sound[D]. Changsha: Central South University, 2012. | |
[16] | 史丽萍, 汤家升, 王攀攀, 等. 采用最优小波树和改进BP神经网络的感应电动机定子故障诊断[J]. 电工技术学报, 2015, 30(24):38-45. |
SHI Liping, TANG Jiasheng, WANG Panpan, et al. Stator fault diagnosis of induction motors using the optimal wavelet tree and improved BP neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(24):38-45. | |
[17] | 魏书荣, 吴锐, 符杨, 等. 基于正序阻抗角的海上DFIG定子绕组匝间短路故障辨识[J]. 电力系统自动化, 2019, 43(12):165-171. |
WEI Shurong, WU Rui, FU Yang, et al. Inter-turn short-circuit fault identification of stator winding for offshore DFIG based on positive sequence impedance angle[J]. Automation of Electric Power Systems, 2019, 43(12):165-171. | |
[18] | 马宏忠, 姚华阳, 黎华敏. 基于Hilbert模量频谱分析的异步电机转子断条故障研究[J]. 电机与控制学报, 2009, 13(3):371-376. |
MA Hongzhong, YAO Huayang, LI Huamin. Study on rotor broken bar fault in induction motors based on spectrum analysis of Hilbert modulus[J]. Electric Machines and Control, 2009, 13(3):371-376. | |
[19] | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences,1998, 454(1871):903-995. |
[20] |
WU Z, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2011, 1(1):1-41.
doi: 10.1142/S1793536909000047 |
[21] |
DRAGOMIRETSKIY K, ZOSSO D. Variation mode decomposition[J]. IEEE Transaction on Signal Processing, 2014, 62(3):532-544.
doi: 10.1109/TSP.2014.2302704 |
[22] | 王进花, 胡佳伟, 曹洁, 等. 基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J]. 吉林大学学报, 2022, 52(2):318-328. |
WANG Jinhua, HU Jiawei, CAO Jie, et al. Multi-fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine[J]. Journal of Jilin University, 2022, 52(2):318-328. | |
[23] | KHODJA M E A, AIMER A F, BOUDINARA H, et al. Bearing fault diagnosis of a PWM inverter fedinduction motor using an improved short time Fourier transform[J]. Journal of Electrical Engineering & Technology, 2019, 14(3):1201-1210. |
[24] |
SAPENA-BANO A, PINEDA-SANCHEZ M, PUCHE-PANADERO R, et al. Low-cost diagnosis of rotor asymmetries in induction machines working at a very low slip using the reduced envelope of the stator current[J]. IEEE Transactions on Energy Conversion, 2015, 30(4):1409-1419.
doi: 10.1109/TEC.2015.2445216 |
[25] | ALLAL A, CHETATE B. High sensitivity detection of the stator short-circuit faults in induction motor using Hilbert Park’s vector product[J]. Fundam. Appl. Sci., 2019, 11(2):994-1022. |
[26] |
SABBAGHIAN-BIDGOLI F, POSHTAN J. Fault detection of broken rotor bar using an improved form of Hilbert-Huang transform[J]. Fluctuation and Noise Letters, 2018, 17(2):1850012.
doi: 10.1142/S0219477518500128 |
[27] | 晋杰, 张佳云, 周炜, 等. 基于希尔伯特-黄变换的汽车耐久性载荷谱编辑[J]. 公路交通科技, 2022, 39(2):140-149. |
JIN Jie, ZHANG Jiayun, ZHOU Wei, et al. Edition of vehicle durability load spectrum based on Hilbert-Huang transform[J]. Journal of Highway and Transportation Research and Development, 2022, 39(2):140-149. | |
[28] |
彭雪莹, 江永全, 杨燕. 基于图卷积网络的迁移学习轴承服役故障诊断[J]. 计算机应用, 2021, 41(12):3626-3631.
doi: 10.11772/j.issn.1001-9081.2021060974 |
PENG Xueying, JIANG Yongquan, YANG Yan. Transfer learning based on graph convolutional network in bearing service fault diagnosis[J]. Journal of Computer Applications, 2021, 41(12):3626-3631.
doi: 10.11772/j.issn.1001-9081.2021060974 |
|
[29] | 李翠省, 廖英英, 刘永强. 基于EEMD和参数自适应VMD的高速列车轮对轴承故障诊断[J]. 振动与冲击, 2022, 41(1):68-77. |
LI Cuixing, LIAO Yingying, LIU Yongqiang. Fault diagnosis of wheelset bearing of high-speed train based on EEMD and parameter adaptive VMD[J]. Journal of Vibration and Shock, 2022, 41(1):68-77. | |
[30] |
CAO H, FAN F, ZHOU K, et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform[J]. Measurement, 2016, 82:439-449.
doi: 10.1016/j.measurement.2016.01.023 |
[31] | 杨青, 陆见光, 唐向红, 等. 基于infoGAN和CNN的轴承小样本故障诊断[J]. 兵器装备工程学报, 2021, 42(11):235-240. |
YANG Qing, LU Jianguang, TANG Xianghong, et al. Bearing small sample fault diagnosis based on infoGAN and CNN[J]. Journal of Ordnance Equipment Engineering, 2021, 42(11):235-240. | |
[32] | 朱紫悦, 张金萍. 基于ITD-MOMEDA联合降噪的滚动轴承故障诊断研究[J]. 机电工程, 2022, 39(2):217-223. |
ZHU Ziyue, ZHANG Jinping. Fault diagnosis of rolling bearing based on ITD-MOMEDA combined noise reduction[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(2):217-223. | |
[33] | 吴雅朋, 王吉芳, 徐小力, 等. 基于小波分析的FastICA联合降噪方法在滚动轴承故障诊断中的应用研究[J]. 中国机械工程, 2017, 28(18):2183-2188,2197. |
WU Yapeng, WANG Jifang, XU Xiaoli, et al. Application research of FastICA noise reduction method based on wavelet analysis in fault diagnosis of rolling bearing[J]. China Mechanical Engineering, 2017, 28(18):2183-2188,2197. | |
[34] | HECKE B V, HE D, QU Y. On the use of spectral averaging of acoustic emission signals for bearing fault diagnostics[J]. Journal of Vibration & Acoustics, 2014, 136(6):061009. |
[35] |
CHEN R, TANG L, HU X, et al. Fault diagnosis method of low-speed rolling bearing based on acoustic emission signal and subspace embedded feature distribution alignment[J]. IEEE Transactions on Industrial Informatics, 2020, 17(8):5402-5410.
doi: 10.1109/TII.2020.3028103 |
[36] | 柳小勤, 汤林江, 侯凯泽, 等. 基于声发射的滚动轴承损伤定位方法研究[J]. 振动与冲击, 2020, 39(15):176-182,213. |
LIU Xiaoqin, TANG Linjing, HOU Kaize, et al. Fault localization for rolling bearing based on AE[J]. Journal of Vibration and Shock, 2020, 39(15):176-182,213. | |
[37] | 于洋, 何明, 刘博, 等. 基于TL-LSTM的轴承故障声发射信号识别研究[J]. 仪器仪表学报, 2019, 40(5):51-59. |
YU Yang, HE Ming, LIU Bo, et al. Research on acoustic emission signal recognition of bearing fault based on TL-LSTM[J]. Chinese Journal of Scientific Instrument, 2019, 40(5):51-59. | |
[38] | APPANA D K, ALEXANDER P, JONG-MYON K. Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks[J]. Soft Computing, 2018:1-11. |
[39] |
MIAO H, HE D. Deep learning based approach for bearing fault diagnosis[J]. IEEE Transactions on Industry Applications, 2017, 53(3):3057-3065.
doi: 10.1109/TIA.2017.2661250 |
[40] | CORNE B, VERVISCH B, DEBRUYNE C, et al. Comparing MCSA with vibration analysis in order to detect bearing faults:A case study[C]// 2015 IEEE International Electric Machines & Drives Conference(IEMDC). IEEE, 2015:1366-1372. |
[41] | 杨明, 董传洋, 徐殿国. 基于电机驱动系统的齿轮故障诊断方法综述[J]. 电工技术学报, 2016, 31(4):58-63. |
YANG Ming, DONG Chuanyang, XU Dianguo. Review of gear fault diagnosis methods based on motor drive system[J]. Transactions of China Electrotechnical Society, 2016, 31(4):58-63. | |
[42] | 张业成, 刘国海, 陈前. 基于电流波动特征的永磁同步电机匝间短路与局部退磁故障分类诊断研究[J]. 电工技术学报, 2022, 37(7):1634-1643,1653. |
ZHANG Yecheng, LIU Guohai, CHEN Qian. Discrimination of interturn short-circuit and local demagnetization in permanent magnet synchronous motor based on current fluctuation characteristics[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1634-1643,1653. | |
[43] | 宋向金, 赵文祥. 交流电机信号特征分析的滚动轴承故障诊断方法综述[J]. 中国电机工程学报, 2022, 42(4):1582-1596. |
SONG Xiangjin, ZHAO Wenxiang. A review of rolling bearing fault diagnosis approaches using AC motor signature analysis[J]. Proceedings of the CSEE, 2022, 42(4):1582-1596. | |
[44] | 宋向金, 王卓, 胡静涛, 等. Hilbert解调制方法诊断异步电机轴承故障[J]. 电工技术学报, 2018, 33(21):4941-4948. |
SONG Xiangjin, WANG Zhuo, HU Jingtao, et al. Diagnosis of bearing fault in induction motors using Hilbert demodulation approach[J]. Transactions of China Electrotechnical Society, 2018, 33(21):4941-4948. | |
[45] | 冯江华. 基于改进磁链峰值能量法的牵引电机轴承故障诊断[J]. 中南大学学报, 2021, 52(4):1380-1388. |
FENG Jianghua. Fault diagnosis of traction motor bearing based on improved flux peak energy method[J]. Journal of Central South University, 2021, 52(4):1380-1388. | |
[46] |
HOANG D T, KANG H J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(6):3325-3333.
doi: 10.1109/TIM.19 |
[47] |
SHI J, REN Y, TANG H, et al. Hydraulic directional valve fault diagnosis using a weighted adaptive fusion of multi-dimensional features of a multi-sensor[J]. Journal of Zhejiang University-Science A, 2022, 23(4):257-271.
doi: 10.1631/jzus.A2100394 |
[48] | 袁彩艳, 孙洁娣, 温江涛, 等. 多域信息融合结合改进残差密集网络的轴承故障诊断[J]. 振动与冲击, 2022, 41(4):200-208,252. |
YUAN Caiyan, SUN Jiedi, WEN Jiangtao, et al. Bearing fault diagnosis based on information fusion and improved residual dense networks[J]. Journal of Vibration and Shock, 2022, 41(4):200-208,252. | |
[49] |
JIAN X, LI W, GUO X, et al. Fault diagnosis of motor bearings based on a one-dimensional fusion neural network[J]. Sensors, 2019, 19(1):122.
doi: 10.3390/s19010122 |
[50] |
TALLAM R M, LEE S B, STONE G C, et al. A survey of methods for detection of stator-related faults in induction machines[J]. IEEE Transactions on Industry Applications, 2007, 43(4):920-933.
doi: 10.1109/TIA.2007.900448 |
[51] |
ZHANG P, DU Y, HABETLER T G, et al. A survey of condition monitoring and protection methods for medium-voltage induction motors[J]. IEEE Transaction on Industry Applications, 2011, 47(1):34-46.
doi: 10.1109/TIA.2010.2090839 |
[52] | MOOSAVI S S, ESMAILI Q, DJERDIR A, et al. Inter-turn fault detection in stator winding of PMSM using wavelet transform[C]// 2017 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2017:1-5. |
[53] |
WANG Shanming, SUN Yuguang, HUANG Ziguo, et al. Analysis of stator internal phase-to-phase short circuit in the 12-phase synchronous generator with rectifier-load system[J]. IEEE Transactions on Energy Conversion, 2017, 33(1):299-311.
doi: 10.1109/TEC.60 |
[54] |
BOUZID M B K, CHAMPENOIS G, TNANI S. Reliable stator fault detection based on the induction motor negative sequence current compensation[J]. International Journal of Electrical Power & Energy Systems, 2018, 95:490-498.
doi: 10.1016/j.ijepes.2017.09.008 |
[55] | 郑大勇, 张品佳. 交流电机定子绝缘故障诊断与在线监测技术综述[J]. 中国电机工程学报, 2019, 39(2):395-406,637. |
ZHENG Dayong, ZHANG Pinjia. A review of fault diagnosis and online condition monitoring of stator insulation in AC electrical machine[J]. Proceedings of the CSEE, 2019, 39(2):395-406,637. | |
[56] | 何玉灵, 孙凯, 王涛, 等. 基于变分模态分解与精细复合多尺度散布熵的发电机匝间短路故障诊断[J]. 电力自动化设备, 2021, 41(3):164-172. |
HE Yuling, SUN Kai, WANG Tao, et al. Fault diagnosis of generator interturn short circuit fault based on variational mode decomposition and refined composite multiscale disperse on entropy[J]. Electric Power Automation Equipment, 2021, 41(3):164-172. | |
[57] |
KIA S H, HENAO H, CAPOLINO G A. Torsional vibration effects on induction machine current and torque signatures in gearbox-based electromechanical system[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11):4689-4699.
doi: 10.1109/TIE.2009.2026772 |
[58] |
张世聪. 大功率电力机车异步牵引电机的典型故障研究[J]. 北京交通大学学报, 2018, 42(2):122-128,137.
doi: 10.11860/j.issn.1673-0291.2018.02.017 |
ZHANG Shicong. Research on typical faults of asynchronous traction motor for high power electric locomotive[J]. Journal of Beijing Jiaotong University, 2018, 42(2):122-128,137.
doi: 10.11860/j.issn.1673-0291.2018.02.017 |
|
[59] |
LIU X, MIAO W, XU Q, et al. Inter-turn short-circuit fault detection approach for permanent magnet synchronous machines through stray magnetic field sensing[J]. IEEE Sensors Journal, 2019, 19(18):7884-7895.
doi: 10.1109/JSEN.7361 |
[60] |
AKHIL V B, ANJALI A K, GANGADHARAN J. Wavelet based real-time stator fault detection of inverter-fed induction motor[J]. IET Electric Power Applications, 2019, 14(1):82-90.
doi: 10.1049/elp2.v14.1 |
[61] | AFSHAR M, ABDI S, MORTAZAVIZADEH A, et al. A new stator winding inter-turn short circuit fault detection method for brushless doubly fed induction machine[C]// 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE). IEEE, 2020:223-228. |
[62] | 李俊卿, 李忠徽, 仝宗义. 基于支持向量机和D-S证据理论的双馈风机定子匝间短路故障诊断[J]. 电机与控制应用, 2018, 45(5):99-103,110. |
LI Junqing, LI Zhonghui, TONG Zongyi. Fault diagnosis of stator inter turn short circuit in DFIG based on support vector machine & D-S evidence theory[J]. Electric Machines and Control Application, 2018, 45(5):99-103,110. | |
[63] | 陈勇, 梁洪, 王成栋, 等. 基于改进小波包变换和信号融合的永磁同步电机匝间短路故障检测[J]. 电工技术学报, 2020, 35(S1):228-234. |
CHEN Yong, LIANG Hong, WANG Chengdong, et al. Detection of stator inter turn short circuit fault in PMSM based on improved wavelet packet transform and signal fusion[J]. Transactions of China Electrotechnical Society, 2020, 35(S1):228-234. | |
[64] |
SHIFAT T A, HUR J W. An effective stator fault diagnosis framework of BLDC motor based on vibration and current signals[J]. IEEE Access, 2020, 8:106968-106981.
doi: 10.1109/Access.6287639 |
[65] |
CHOUDHARY A, GOYAL D, SHIMI S L, et al. Condition monitoring and fault diagnosis of induction motors:A review[J]. Archives of Computational Methods in Engineering, 2019, 26(4):1221-1238.
doi: 10.1007/s11831-018-9286-z |
[66] |
VALLES-NOVO R, RANGEL-MAGDALENO J, RAMIREZ-CORTES J M, et al. Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(5):1118-1128.
doi: 10.1109/TIM.2014.2373513 |
[67] |
MUSTAFA M O, NIKOLAKOPOULOS G, GUSTAFSSON T. Broken bars fault diagnosis based on uncertainty bounds violation for three-phase induction motors[J]. International Transactions on Electrical Energy Systems, 2015, 25(2):304-325.
doi: 10.1002/etep.v25.2 |
[68] | 谢颖, 王云阳. 笼型感应电机发生断条故障时转子局部电磁力计算[J]. 中国电机工程学报, 2013, 33(27):127-134,18. |
XIE Ying, WANG Yunyang. Local electromagnetic force calculation on the rotor of squirrel-cage induction motors with broken bar faults[J]. Proceedings of the CSEE, 2013, 33(27):127-134,18. | |
[69] | WANG Z, LI H, ZHEN D, et al. Vibration signature analysis for broken rotor bar diagnosis in induction motors based on cyclic modulation spectrum[C]// International Conference on Maintenance Engineering. Cham:Springer, 2020:616-626. |
[70] | LI H, FENG G, ZHEN D, et al. A normalized frequency-domain energy operator for broken rotor bar fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1-10. |
[71] | 杨恭勇, 丁潇男, 王珺琦, 等. 基于VMD的Volterra模型奇异值熵的转子故障诊断方法[J]. 制造技术与机床, 2022(3):150-156. |
YANG Gongyong, DING Xiaonan, WANG Junqi, et al. Rotor fault diagnosis method of singular value entropy of Volterra model based on VMD[J]. Manufacturing Technology & Machine Tool, 2022(3):150-156. | |
[72] |
LI H, WANG Z, ZHEN D, et al. Modulation sideband separation using the Teager-Kaiser energy operator for rotor fault diagnostics of induction motors[J]. Energies, 2019, 12(23):4437.
doi: 10.3390/en12234437 |
[73] | 李睿彧, 刘飞, 梁霖, 等. 基于参数优化变分模态分解的交流变频电机转子断条故障识别方法[J]. 电工技术学报, 2021, 36(18):3922-3933. |
LI Ruiyu, LIU Fei, LIANG Lin, et al. Fault identification of broken rotor bars for the variable frequency AC motor based on parameter optimized variational mode decomposition[J]. Transactions of China Electrotechnical Society, 2021, 36(18):3922-3933. | |
[74] | 许伯强, 李和明, 孙丽玲, 等. 笼型异步电动机转子断条故障检测新方法[J]. 中国电机工程学报, 2004, 24(5):119-123. |
XU Boqiang, LI Heming, SUN Liling, et al. A novel detection method for broken rotor bars in induction motors[J]. Proceedings of the CSEE, 2004, 24(5):119-123. | |
[75] | 史丽萍, 吴文军, 马晓伟, 等. 基于MUSIC与FOA的异步电动机转子断条故障检测[J]. 微特电机, 2017, 45(8):45-48,60. |
SHI Liping, WU Wenjun, MA Xiaowei, et al. A detection approach based on MUSIC and FOA for broken rotor bar fault in induction motors[J]. Small and Special Electrical Machines, 2017, 45(8):45-48,60. | |
[76] | CRUZ M A, CARDOSO A J M S. Rotor cage fault diagnosis in three-phase induction motors by extended Park’s vector approach[J]. Electric Machines & Power Systems, 2000, 28(4):289-299. |
[77] |
CRUZ S M A, CARDOSO A J M. Stator winding fault diagnosis in three-phase synchronous and asynchronyous motors,by the extended Park’s vector approach[J]. IEEE Transactions on Industry Applications, 2001, 37(5):1227-1233.
doi: 10.1109/28.952496 |
[78] |
ALI M Z, SHABBIR M N S K, LIANG X, et al. Machine learning-based fault diagnosis for single-and multi-faults in induction motors using measured stator currents and vibration signals[J]. IEEE Transactions on Industry Applications, 2019, 55(3):2378-2391.
doi: 10.1109/TIA.28 |
[79] | 谢颖, 郭金鹏, 黎志伟, 等. 端环断裂引发电机电磁性能及振动变化规律的研究[J]. 中国电机工程学报, 2019, 39(6):1803-1814,1876. |
XIE Ying, GUO Jinpeng, LI Zhiwei, et al. Research on electromagnetic performances and vibration variation of induction motor with broken end rings[J]. Proceedings of the CSEE, 2019, 39(6):1803-1814,1876. | |
[80] |
LIU D, ZENG H, XIAO Z, et al. Fault diagnosis of rotor using EMD thresholding-based de-noising combined with probabilistic neural network[J]. Journal of Vibroengineering, 2017, 19(8):5920-5931.
doi: 10.21595/jve |
[81] |
LIU D, XIAO Z, HU X, et al. Feature extraction of rotor fault based on EEMD and curve code[J]. Measurement, 2019, 135:712-724.
doi: 10.1016/j.measurement.2018.12.009 |
[82] |
DELGADO-ARREDONDO P A, MORINIGO-SOTELO D, OSORNIO-RIOS R A, et al. Methodology for fault detection in induction motors via sound and vibration signals[J]. Mechanical Systems and Signal Processing, 2017, 83:568-589.
doi: 10.1016/j.ymssp.2016.06.032 |
[83] | 张雅晖, 杨凯, 李天乐. 一种利用融合相关谱的异步电机故障诊断方法[J]. 电机与控制学报, 2021, 25(11):1-7. |
ZHANG Yahui, YANG Kai, LI Tianle. Fault diagnosis method of asynchronous motors using fusion correlation spectrum[J]. Electric Machines and Control, 2021, 25(11):1-7. | |
[84] |
LIANG X, ALI M Z, ZHANG H. Induction motors fault diagnosis using finite element method:A review[J]. IEEE Transactions on Industry Applications, 2019, 56(2):1205-1217.
doi: 10.1109/TIA.28 |
[85] |
RAJESWARAN N, SWARUPA M L, RAO T S, et al. Hybrid artificial intelligence based fault diagnosis of SVPWM voltage source inverters for induction motor[J]. Materials Today Proceedings, 2018, 5(1):565-571.
doi: 10.1016/j.matpr.2017.11.119 |
[1] | 邵海东, 肖一鸣, 颜深. 仿真数据驱动的改进无监督域适应轴承故障诊断[J]. 机械工程学报, 2023, 59(3): 76-85. |
[2] | 尹少博. 感应电机无速度传感器控制带速重投方法研究[J]. 电气工程学报, 2022, 17(3): 130-137. |
[3] | 邵海东, 张笑阳, 程军圣, 杨宇. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90. |
[4] | 陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107. |
[5] | 陈蕾. 大型感应电机弧偏心挠度计算[J]. 电气工程学报, 2019, 14(2): 47-54. |
[6] | 刘虹,厉虹. 改进的感应电机直接转矩控制系统[J]. 电气工程学报, 2018, 13(4): 11-17. |
[7] | 刘东东, 程卫东, 万广通. 基于故障特征趋势线模板的滚动轴承故障诊断*[J]. 机械工程学报, 2017, 53(9): 83-91. |
[8] | 张永昌,夏波,杨海涛. 感应电机三矢量模型预测磁链控制[J]. 电气工程学报, 2017, 12(3): 1-9. |
[9] | 樊薇 李双 蔡改改 沈长青 黄伟国 朱忠奎. 瞬态成分Laplace小波稀疏表示及其轴承故障特征提取应用[J]. 机械工程学报, 2015, 51(15): 110-118. |
[10] | 司纪凯,韩俊波,谢璐佳,封海潮,许孝卓. 两自由度直驱感应电机耦合效应分析和矢量控制建模[J]. 电气工程学报, 2015, 10(12): 7-12. |
[11] | 孙跃,陈垒,鲍晓华. 感应电机定子轭部螺钉孔对三相空载电流平衡度和定子铁耗的影响[J]. 电气工程学报, 2015, 10(10): 69-74. |
[12] | 张 晗 杜朝辉 方作为 王诗彬 陈雪峰. 基于稀疏分解理论的航空发动机轴承故障诊断[J]. 机械工程学报, 2015, 51(1): 97-105. |
[13] | 王诗彬;许佳;朱忠奎. 瞬态成分参数的最小二乘法辨识及其轴承故障特征提取应用[J]. , 2012, 48(7): 68-76. |
[14] | 孙丽玲;许伯强;李志远. 基于旋转不变信号参数估计技术与模式搜索算法的异步电动机转子故障检测新方法[J]. , 2012, 48(13): 89-95. |
[15] | 彭富强;于德介;罗洁思;武春燕. 基于多尺度线调频基稀疏信号分解的轴承故障诊断[J]. , 2010, 46(7): 88-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||