电气工程学报 ›› 2024, Vol. 19 ›› Issue (1): 344-350.doi: 10.11985/2024.01.037

• 新能源发电与电能存储 • 上一篇    下一篇

扫码分享

基于CNN-BiGRU-Attention的短期电力负荷预测

任爽(), 杨凯(), 商继财(), 祁继明(), 魏翔宇(), 蔡永根()   

  1. 东北石油大学电气信息工程学院 大庆 163318
  • 收稿日期:2023-05-27 修回日期:2023-11-15 出版日期:2024-03-25 发布日期:2024-04-25
  • 通讯作者: 杨凯,男,1997年生,硕士研究生。主要研究方向为负荷预测。E-mail:17806273023@163.com
  • 作者简介:任爽,女,1979年生,硕士,副教授。主要研究方向为电机轴承故障诊断、负荷预测、电机与电器。E-mail:rensh-2009@163.com;
    商继财,女,1997年生,硕士研究生。主要研究方向为绝缘子故障识别。E-mail:316570831@qq.com;
    祁继明,男,1997年生,硕士研究生。主要研究方向为电力系统自动化。E-mail:291737085@qq.com;
    魏翔宇,男,1998年生,硕士研究生。主要研究方向为电机与电器。E-mail:820923973@qq.com;
    蔡永根,男,1998年生,硕士研究生。主要研究方向为电机与电器。E-mail:18751469768@163.com

Short-term Power Load Forecasting Based on CNN-BiGRU-Attention

REN Shuang(), YANG Kai(), SHANG Jicai(), QI Jiming(), WEI Xiangyu(), CAI Yonggen()   

  1. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318
  • Received:2023-05-27 Revised:2023-11-15 Online:2024-03-25 Published:2024-04-25

摘要:

针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。

关键词: 卷积神经网络, 双向门控循环单元, 注意力机制, 短期电力负荷预测, 混合预测模型

Abstract:

In the light of the problems of strong randomness of current power load data, complex influencing factors and low accuracy of traditional single forecasting model, combining the different advantages of convolutional neural network(CNN), bi-directional gated recurrent unit(BiGRU) and attention mechanism(Attention) in short-term load forecasting, a hybrid CNN-BiGRU-Attention based prediction model is proposed. First the initial features of historical load and meteorological data is extracted through CNN, then time series association of feature data is further excavated by BiGRU. Then attention mechanism is introduced to give different weights to the output status of BiGRU, strengthen key features. Finally, load prediction is completed. The experimental results show that the mean absolute percentage error(MAPE), root mean square error(RMSE) and R-square(R2) of the model are 0.167%, 0.057% and 0.993, respectively, and the three indicators are significantly better than other models, with higher prediction accuracy and stability. The advantages of this proposed model in short-term load forecasting are verified.

Key words: Convolutional neural network, bi-directional gated recurrent unit, attention mechanism, short-term power load forecasting, hybrid prediction model

中图分类号: