[1] |
赵振利. 电动汽车私桩共享充电定价模型及效益分配研究[D]. 北京: 华北电力大学, 2020.
|
|
ZHAO Zhenli. Study on pricing model and benefit distribution of charging pile sharing for electric vehicles[D]. Beijing: North China Electric Power University, 2020.
|
[2] |
KIM I L S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Transactions on Power Electronics, 2009, 25(4):1013-1022.
doi: 10.1109/TPEL.2009.2034966
|
[3] |
耿星, 王友仁. 蓄电池SOH估算方法研究综述[J]. 机械制造与自动化, 2019, 48(1):210-212.
|
|
GENG Xing, WANG Youren. Review of SOH estimation method for battery[J]. Mechanical Manufacturing and Automation, 2019, 48(1):210-212.
|
[4] |
HASHEMI S R, MAHAJAN A M, FARHAD S. Online estimation of battery model parameters and state of health in electric and hybrid aircraft application[J]. Energy, 2021, 229(1):120699.
doi: 10.1016/j.energy.2021.120699
|
[5] |
ZHOU L, YANG Z, LI D, et al. State-of-health estimation for LiFePO4 battery system on real-world electric vehicles considering aging stage[J]. IEEE Transactions on Transportation Electrification, 2021, 8(2):1724-1733.
doi: 10.1109/TTE.2021.3129497
|
[6] |
周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1):107-113,327.
|
|
ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1):107-113,327.
|
[7] |
DRISCOLL L, De La TORRE S, GOMEZ-RUIZ J A. Feature-based lithium-ion battery state of health estimation with artificial neural networks[J]. Journal of Energy Storage, 2022,50:104584.
|
[8] |
DUAN W, SONG S, XIAO F, et al. Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter[J]. Journal of Energy Storage, 2023,65:107322.
|
[9] |
张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020, 9(1):138-144.
doi: 10.19799/j.cnki.2095-4239.2019.0190
|
|
ZHANG Xinfeng, YAO Mengmeng, WANG Zhongyi, et al. Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy Storage Science and Technology, 2020, 9(1):138-144.
doi: 10.19799/j.cnki.2095-4239.2019.0190
|
[10] |
CHENG G, WANG X, HE Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network[J]. Energy, 2021,232:121022.
|
[11] |
JIA J, LIANG J, SHI Y, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energy, 2020, 13(2):375.
|
[12] |
范智伟, 乔丹, 崔海港. 锂离子电池充放电倍率对容量衰减影响研究[J]. 电源技术, 2020, 44(3):325-329.
|
|
FAN Zhiwei, QIAO Dan, CUI Haigang. Research on the effect of charge and discharge rates on capacity fading of lithium-ion batteries[J]. Journal of Power Sources, 2020, 44(3):325-329.
|
[13] |
武佳卉, 邵振国, 杨少华, 等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术, 2020, 21(11):1-6.
|
|
WU Jiahui, SHAO Zhenguo, YANG Shaohua, et al. Review and prospect of data cleaning in renewable energy power prediction[J]. Electrical Engineering, 2020, 21(11):1-6.
|
[14] |
胡杰, 何陈, 朱雪玲, 等. 基于实车数据的电动汽车电池剩余使用寿命预测[J]. 交通运输系统工程与信息, 2022, 22(1):292-300.
|
|
HU Jie, HE Chen, ZHU Xueling, et al. Predicting remaining useful life of electric vehicle battery based on real vehicle data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1):292-300.
|
[15] |
杨心月, 荆博, 梅志刚, 等. 风电机组功率异常数据剔除方法研究[J/OL]. 电测与仪表:1-9[2024-01-25]. http://kns.cnki.net/kcms/detail/23.1202.TH.20221025.1809.006.html.
|
|
YANG Xinyue, JING Bo, MEI Zhigang, et al. Methods for elimination of abnormal power data of wind turbine[J/OL]. Electrical Measurement and Instrumentation:1-9[2024-01-25]. http://kns.cnki.net/kcms/detail/23.1202.TH.20221025.1809.006.html.
|
[16] |
LI Q, LI R, JI K, et al. Kalman filter and its application[C]// 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS),Tianjin,China,2015: 74-77.
|
[17] |
WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
doi: 10.1142/S1793536909000047
|
[18] |
OTCHERE D A, GANAT T O A, GHOLAMI R, et al. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties:Comparative analysis of ANN and SVM models[J]. Journal of Petroleum Science and Engineering, 2021,200:108182.
|
[19] |
LI L, WANG P, CHAO K-H, et al. Remaining useful life prediction for lithium-ion batteries based on Gaussian processes mixture[J]. PloS One, 2016, 11(9):e0163004.
doi: 10.1371/journal.pone.0163004
|
[20] |
ZHU M, OUYANG Q, WAN Y, et al. Remaining useful life prediction of lithium-ion batteries:A hybrid approach of grey-Markov chain model and improved Gaussian process[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1):143-153.
doi: 10.1109/JESTPE.2021.3098378
|