电气工程学报 ›› 2024, Vol. 19 ›› Issue (1): 87-96.doi: 10.11985/2024.01.009

• 特邀专栏:储能关键装备数字化智能安全管理技术 • 上一篇    下一篇

扫码分享

基于支持向量机与改进高斯过程混合模型的车用电池容量预测方法*

李雨佳1(), 欧阳权1(), 刘灏仪1, 祝铭烨2, 王志胜1   

  1. 1.南京航空航天大学自动化学院 南京 211106
    2.中国科学技术大学网络空间安全学院 合肥 230026
  • 收稿日期:2023-10-08 修回日期:2023-11-28 出版日期:2024-03-25 发布日期:2024-04-25
  • 作者简介:李雨佳,女,2000年生,硕士研究生。主要研究方向为电池管理系统。E-mail:liyujia@nuaa.edu.cn;
    欧阳权,男,1991年生,博士,副教授,硕士研究生导师。主要研究方向为锂电池管理系统、新能源系统集成与控制。E-mail:ouyangquan@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(61903189);中国博士后科学基金(2020M681589)

Vehicle Battery Capacity Prediction Based on Hybrid Model of Support Vector Machine and Improved Gaussian Process

LI Yujia1(), OUYANG Quan1(), LIU Haoyi1, ZHU Mingye2, WANG Zhisheng1   

  1. 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
    2. School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026
  • Received:2023-10-08 Revised:2023-11-28 Online:2024-03-25 Published:2024-04-25

摘要:

基于数据驱动的容量预测有助于锂电池健康管理以延长其使用寿命。然而,目前大多数相关方法基于实验室数据展开,无法反映实际复杂工况下车用电池老化特性。因此,本文利用电动汽车实车数据,设计了一种基于支持向量机与改进高斯过程的混合模型,实现了车用电池容量的精确预测。首先从汽车实时运行数据集中利用滑动窗口安时积分法提取其容量数据,设计了集合经验模态分解方法,将电池容量分为长期退化趋势和短期波动两部分,然后分别设计支持向量机与改进高斯过程对这两个分量进行建模,将结果融合得到最终的容量预测值。基于三辆实车数据集的试验结果表明,所提出的方法可以适用于实车数据的高精度容量预测。

关键词: 实车数据, 容量预测, 支持向量机, 改进高斯过程

Abstract:

The data-driven-based capacity prediction is essential for lithium-ion battery health management to extend its lifetime. However, most of the state-of-the-art methods are based on laboratory data analysis, which can not reflect the aging characteristics of the actual vehicle battery under complex conditions. Therefore, a hybrid model based on support vector machine and improved Gaussian process is designed to accurately predict the capacity of electric vehicle battery by using real vehicle data. Firstly, the capacity data is extracted from the real-time operation data set of vehicles by using the sliding window ampere-hour integration method, and the ensemble empirical mode decomposition method is designed to divide the battery capacity into two parts: long-term degradation trend and short-term fluctuation. Then, the support vector machine and the improved Gaussian process are designed respectively to model the two components, and the results are fused to obtain the final capacity prediction value. Extensive experiment results on three vehicles validate the effectiveness of the proposed hybrid prediction model, with higher accuracy demonstrated than the commonly used methods.

Key words: Real vehicle data, capacity prediction, support vector machine, improved Gaussian process

中图分类号: