[1] |
张茜. 乘用车和商用车场景下电动汽车与燃油车技术路线对比分析[J]. 石油石化绿色低碳, 2022, 7(4):6-9,53.
|
|
ZHANG Xi. Comparative analysis of EV and ICE vehicles in passenger and commercial vehicle scenarios[J]. Green Petroleum & Petrochemicals, 2022, 7(4):6-9,53.
|
[2] |
来鑫, 陈权威, 顾黄辉, 等. 面向“双碳”战略目标的锂离子电池生命周期评价:框架、方法与进展[J]. 机械工程学报, 2022, 58(22):3-18.
doi: 10.3901/JME.2022.22.003
|
|
LAI Xin, CHEN Quanwei, GU Huanghui, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality:Framework,methods,and progress[J]. Journal of Mechanical Engineering, 2022, 58(22):3-18.
doi: 10.3901/JME.2022.22.003
|
[3] |
肖曦, 田培根, 于璐, 等. 动力电池梯次利用储能系统电热安全研究现状及展望[J]. 电气工程学报, 2022, 17(1):206-224.
|
|
XIAO Xi, TIAN Peigen, YU Lu, et al. Status and prospect of safety studies of cascade power battery energy storage system[J]. Journal of Electrical Engineering, 2022, 17(1):206-224.
|
[4] |
李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6):1981-1994.
doi: 10.19799/j.cnki.2095-4239.2023.0316
|
|
LI Fang, MIN Yongjun, ZHANG Yong. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6):1981-1994.
doi: 10.19799/j.cnki.2095-4239.2023.0316
|
[5] |
蔡涛, 张钊诚, 袁奥特, 等. 锂离子电池储能安全管理中的机器学习方法综述[J]. 电力系统保护与控制, 2022, 50(24):178-187.
|
|
CAI Tao, ZHANG Zhaocheng, YUAN Aote, et al. Review of machine learning for safety management of li-ion battery energy storage[J]. Power System Protection and Control, 2022, 50(24):178-187.
|
[6] |
徐彬翔, 郑林锋, 黄乙恒, 等. 基于改进最小二乘支持向量机的锂离子电池健康状态快速估计方法[J]. 电气工程学报, 2022, 17(4):11-19.
|
|
XU Binxiang, ZHENG Linfeng, HUANG Yiheng, et al. Fast estimating the state of health of lithium-ion batteries based on improved least squares support vector machine[J]. Journal of Electrical Engineering, 2022, 17(4):11-19.
|
[7] |
胡晓亚, 郭永芳, 张若可. 锂离子电池健康状态估计方法研究综述[J]. 电源学报, 2022, 20(1):126-133.
|
|
HU Xiaoya, GUO Yongfang, ZHANG Ruoke. Review of state-of-health estimation methods for lithium-ion battery[J]. Journal of Power Supply, 2022, 20(1):126-133.
doi: 10.13234/j.issn.2095-2805.2022.1.126
|
[8] |
LIU Kailong, SHANG Yunlong, OUYANG Quan, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4):3170-3180.
doi: 10.1109/TIE.41
|
[9] |
孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3):666-674.
|
|
SUN Bingxiang, REN Pengbo, CHEN Yuzhe, et al. Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3):666-674.
|
[10] |
方德宇, 楚潇, 刘涛, 等. 基于数据-模型驱动的锂离子电池健康状态估计[J]. 电气工程学报, 2022, 17(4):20-31.
|
|
FANG Deyu, CHU Xiao, LIU Tao, et al. Research on health assessment method of lithium-ion battery based on bata-model hybrid drive[J]. Journal of Electrical Engineering, 2022, 17(4):20-31.
|
[11] |
李欣. 车用锂离子电池全生命周期寿命预测与健康管理方法研究[D]. 长春: 吉林大学, 2022.
|
|
LI Xin. Research on life prognostics and health management of electric vehicles lithium-ion battery in the whole life cycle[D]. Changchun: Jilin University, 2022.
|
[12] |
ZHANG Lijun, MU Zhongqiang, SUN Changyan. Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018,6:17729-17740.
|
[13] |
GUHA A, PATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1):135-146.
doi: 10.1109/TTE.2017.2776558
|
[14] |
石海鹏, 来文青, 王永红, 等. 一种用于辨识预判三元电池容量“跳水”故障的方法:中国,CN111175653A[P]. 2020-05-19.
|
|
SHI Haipeng, LAI Wenqing, WANG Yonghong, et al. A method for recognizing and predicting ternary battery capacity “diving” faults:China,CN111175653A[P]. 2020-05-19.
|
[15] |
YANG Duo, ZHANG Xu, PAN Rui, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 15(3):387-395.
|
[16] |
ZHOU Ziyou, LIU Yonggang, YOU Mingxing, et al. Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction[J]. Green Energy and Intelligent Transportation, 2022, 1(1):100008.
doi: 10.1016/j.geits.2022.100008
|
[17] |
YOU Hezhe, ZHU Jiangong, WANG Xueyuan, et al. Nonlinear health evaluation for lithium-ion battery within full-lifespan[J]. Journal of Energy Chemistry, 2022,72:333-341.
|
[18] |
马剑, 马梁, 宋登巍, 等. 一种锂电池容量跳水识别方法及装置:中国,CN112327194B[P]. 2021-09-24.
|
|
MA Jian, MA Liang, SONG Dengwei, et al. A lithium battery capacity diving identification method and device:China, CN112327194B[P]. 2021-09-24.
|
[19] |
马剑, 宋登巍, 马梁, 等. 一种电池容量跳水风险评估方法及系统:中国,CN112327167B[P]. 2022-01-28.
|
|
MA Jian, SONG Dengwei, MA Liang, et al. A battery capacity diving risk assessment method and system:China, CN112327167B[P]. 2022-01-28.
|
[20] |
戴海峰, 尤贺泽, 魏学哲, 等. 基于几何特征融合决策的锂电池容量跳水转折点识别方法:中国,CN113777494A[P]. 2021-12-10.
|
|
DAI Haifeng, YOU Heze, WEI Xuezhe, et al. An identification method for lithium battery capacity diving turning point based on geometric feature fusion decision:China, CN113777494A[P]. 2021-12-10.
|