电气工程学报 ›› 2024, Vol. 19 ›› Issue (1): 97-105.doi: 10.11985/2024.01.010

• 特邀专栏:储能关键装备数字化智能安全管理技术 • 上一篇    下一篇

扫码分享

融合数据驱动和充电行为的电动汽车能耗预测方法*

马军伟1(), 霍美如1, 赵敏1, 杜锋1, 景峰1, 冯煜2   

  1. 1.国网山西省电力公司信息通信分公司 太原 030021
    2.国网电动汽车(山西)服务有限公司 太原 030032
  • 收稿日期:2023-10-17 修回日期:2023-12-20 出版日期:2024-03-25 发布日期:2024-04-25
  • 作者简介:马军伟,男,1982年生,博士,高级工程师。主要研究方向为数字能源技术、虚拟电厂等。E-mail:junweima@foxmail.com
  • 基金资助:
    国家电网公司总部科技资助项目(5700-202315287A-1-1-ZN)

Energy Consumption Prediction Method for Electric Vehicles by Integrating Charging Behavior with Data-driven Method

MA Junwei1(), HUO Meiru1, ZHAO Min1, DU Feng1, JING Feng1, FENG Yu2   

  1. 1. Information and Communication Branch, State Grid Shanxi Power Company, Taiyuan 030021
    2. State Grid Electric Vehicle (Shanxi) Service Co., Ltd., Taiyuan 030032
  • Received:2023-10-17 Revised:2023-12-20 Online:2024-03-25 Published:2024-04-25

摘要:

电动汽车的能耗预测对于车辆路径规划与充电行为至关重要。提出一种考虑充电行为的多模型融合能耗预测方法,首先构建基于实车稀疏数据与有限参数的能耗计算模型,在此基础上构建充电行为模型,分析并提取能耗强相关的充电行为特征,最后基于长短期记忆循环神经网络(Long short-term memory neural network, LSTM)搭建能耗预测模型。使用实车数据对所提方法进行验证,结果表明,该方法可以精准预测相同车型不同起始电池荷电状态(State of charge, SOC)、不同温度、不同时间段下的汽车能耗,均方根误差(Root mean square error,RMSE)为1.27,与现有方法相比,RMSE至少降低4.5%。

关键词: 能耗预测, 电动汽车, 充电行为, LSTM神经网络

Abstract:

Accurately predicting the energy consumption of electric vehicles is essential for efficient vehicle path planning and charging. A multi-model fusion method for energy consumption prediction that takes into account charging behavior is proposed. Firstly, based on the limited parameters and sparse real vehicle data, the energy consumption calculation model is constructed. Then, the charging behavior model is created to analyze and extract features closely related to energy consumption. Finally, long short-term memory neural network(LSTM) is used to construct the energy consumption prediction model. The method is validated with real vehicle data. Results indicate that the proposed method accurately predicts the energy consumption for the given car model with differing starting battery states of charge(SOC), temperatures, and periods. The root mean square error(RMSE) recorded is 1.27, which shows a reduction of no less than 4.5% compared to the existing methods.

Key words: Energy consumption prediction, electric vehicles, charging behavior, long short-term memory neural network

中图分类号: