[1] |
梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江电力, 2020, 39(3):75-81.
|
|
MEI Jian, ZHANG Jie, LIU Shuangyu, et al. Development status of battery energy storage technology[J]. Zhejiang Electric Power, 2020, 39(3):75-81.
|
[2] |
陈琳, 陈静, 王惠民, 等. 基于小波包能量熵的电池剩余寿命预测[J]. 电工技术学报, 2020, 35(8):1827-1835.
|
|
CHEN Lin, CHEN Jing, WANG Huimin, et al. Prediction of battery remaining useful life based on wavelet packet energy entropy[J]. Transactions of China Electrotechnical Society, 2020, 35(8):1827-1835.
|
[3] |
LI Junfu, LYU Chao, WANG Lixin, et al. Remaining capacity estimation of Li-ion batteries based on temperature sample entropy and particle filter[J]. Journal of Power Sources, 2014, 268(5):895-903.
doi: 10.1016/j.jpowsour.2014.06.133
|
[4] |
XING Yinjiao, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6):811-820.
doi: 10.1016/j.microrel.2012.12.003
|
[5] |
LYU Chao, LAI Qingzhi, GE Tengfei, et al. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework[J]. Energy, 2017, 120(1):975-984.
doi: 10.1016/j.energy.2016.12.004
|
[6] |
LIU Zhenbao, SUN Gaoyuan, BU Shuhui, et al. Particle learning framework for estimating the remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2):280-293.
doi: 10.1109/TIM.2016.2622838
|
[7] |
XU Xin, CHEN Nan. A state-space-based prognostics model for lithium-ion battery degradation[J]. Reliability Engineering & System Safety, 2017,159:47-57.
|
[8] |
WAAG W, FLEISCHER C, SAUER D U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258(14):321-339.
doi: 10.1016/j.jpowsour.2014.02.064
|
[9] |
NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239(1):680-688.
doi: 10.1016/j.jpowsour.2012.11.146
|
[10] |
ZHANG Yongzhi, XIONG Rui, HE Hongwen, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7):5695-5705.
doi: 10.1109/TVT.25
|
[11] |
尤贺泽, 戴海峰, 于臣臣, 等. 软包锂离子电池应力特性及其建模[J]. 同济大学学报, 2020, 48(2):231-240.
|
|
YOU Heze, DAI Haifeng, YU Chenchen, et al. Stress properties and modeling of lithium-ion pouch batteries[J]. Journal of Tongji University, 2020, 48(2):231-240.
|
[12] |
CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 2014, 245(1):745-751.
doi: 10.1016/j.jpowsour.2013.06.165
|
[13] |
CANNARELLA J, ARNOLD C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources, 2014, 269(10):7-14.
doi: 10.1016/j.jpowsour.2014.07.003
|
[14] |
XU Jun, LIU Binghe, HU Dayong. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries[J]. Scientific Reports, 2016, 6(1):21829.
doi: 10.1038/srep21829
|
[15] |
MOHTAT P, LEE S, SIEGEL J, et al. Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors[J]. Journal of the Electrochemical Society, 2021,168:100520.
|
[16] |
WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1998, 1(2):270-280.
doi: 10.1162/neco.1989.1.2.270
|
[17] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[18] |
WANG Xianming, SONE Y, SEGAMI G, et al. Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements[J]. Journal of the Electrochemical Society, 2007, 154(1):A14.
|
[19] |
牛少军, 吴凯, 朱国斌, 等. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9):2989-2994.
doi: 10.19799/j.cnki.2095-4239.2022.0194
|
|
NIU Shaojun, WU Kai, ZHU Guobin, et al. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9):2989-2994.
doi: 10.19799/j.cnki.2095-4239.2022.0194
|
[20] |
耿鑫月, 胡昌华, 郑建飞, 等. 双时间尺度下基于Transformer的锂电池剩余寿命预测[J]. 空间控制技术与应用, 2023, 49(4):119-126.
|
|
GENG Xinyue, HU Changhua, ZHENG Jianfei, et al. Remaining life prediction of lithium batteries based on transformer at dual time scales[J]. Aerospace Control and Application, 2023, 49(4):119-126.
|
[21] |
黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15):3753-3766.
|
|
HUANG Kai, DING Heng, GUO Yongfang, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15):3753-3766.
|
[22] |
李练兵, 祝亚尊, 田永嘉, 等. 基于Elman神经网络的锂离子电池RUL间接预测研究[J]. 电源技术, 2019, 43(6):1027-1031.
|
|
LI Lianbing, ZHU Yazun, TIAN Yongjia, et al. RUL indirect prediction of lithium-ion battery based on Elman neural network[J]. Chinese Journal of Power Sources, 2019, 43(6):1027-1031.
|
[23] |
叶林峰, 石元博, 黄越洋. 基于BiGRU网络的锂电池寿命预测[J]. 电源技术, 2021, 45(5):598-601.
|
|
YE Linfeng, SHI Yuanbo, HUANG Yueyang. Lithium battery life prediction based on BiGRU network[J]. Chinese Journal of Power Sources, 2021, 45(5):598-601.
|