电气工程学报 ›› 2024, Vol. 19 ›› Issue (1): 33-48.doi: 10.11985/2024.01.004
• 特邀专栏:储能关键装备数字化智能安全管理技术 • 上一篇 下一篇
金建新1(), 虞儒新1, 刘刚1, 许林波1, 马延强2, 王浩彬2, 胡晨3(
)
收稿日期:
2023-10-08
修回日期:
2023-11-29
出版日期:
2024-03-25
发布日期:
2024-04-25
作者简介:
金建新,男,1971年生,高级工程师。主要研究方向为能源发电设备智能运维。E-mail:jinjianxin@zjenergy.com.cn;基金资助:
JIN Jianxin1(), YU Ruxin1, LIU Gang1, XU Linbo1, MA Yanqiang2, WANG Haobin2, HU Chen3(
)
Received:
2023-10-08
Revised:
2023-11-29
Online:
2024-03-25
Published:
2024-04-25
摘要:
随着锂离子电池(Lithium-ion batteries,LIB)在电动汽车、储能电站和备用电源等领域的广泛应用,准确、及时地估计电池健康状态(State of health, SOH)是确保电池系统运行可靠性和安全性的关键因素。锂离子电池内部复杂的电化学反应和多变的外部使用条件,使得实现精准的健康状态估计具有挑战。随着人工智能、大数据分析等技术的快速发展,电池SOH评估的方法也逐渐多样化。首先介绍电池的老化机理和SOH概念,随后介绍了实验法、基于模型、数据驱动和融合方法,详细分析了每种方法的特点,并比较了在实际应用中相应的优势和局限性。最后,对SOH估算的未来趋势进行了展望。
中图分类号:
金建新, 虞儒新, 刘刚, 许林波, 马延强, 王浩彬, 胡晨. 锂离子电池健康状态估算方法研究进展*[J]. 电气工程学报, 2024, 19(1): 33-48.
JIN Jianxin, YU Ruxin, LIU Gang, XU Linbo, MA Yanqiang, WANG Haobin, HU Chen. Research Progress on State-of-health Estimating Method for Lithium-ion Batteries[J]. Journal of Electrical Engineering, 2024, 19(1): 33-48.
表1
常用电池等效电路模型比较"
模型名称 | 模型结构 | 描述方程 | 参数 | 优点 | 缺点 |
---|---|---|---|---|---|
Rint模型 | ![]() | V=E-IR0 | E为开路电压,R0为欧姆内阻,V为端电压,I为负载电流 | 模型简单,易于参数辨识 | 无法反映电池动态特性,精度低,应用范围较小 |
Thevenin模型 | ![]() | V=E-IR0-VC | R1和C为表述电池极化效应的电阻和电容 | RC回路用于模拟电池动态特性,考虑了欧姆极化和电化学极化,在实际工程应用中较多 | 因模型参数为常数,模型精度较大程度上受温度变化和电池老化的影响 |
二阶RC模型 | ![]() | R1和C1分别为电化学阻抗和电化学电容;R2和C2分别为浓差阻抗和浓差电容 | 同时考虑了欧姆极化、电化学极化和浓差极化,在估计大倍率工况条件方面具有更高的精度 | 结构复杂、参数较多,计算较为复杂 | |
PNGV模型 | ![]() | COC为等效电容 | 模型考虑温度影响,可描述开路电压、容量变化及电池内部反应过程,对电池各种工况适用性好,精确度较好 | 串联电容的误差累积降低模型精确度,不能反映电池自放电问题 | |
GNL模型 | ![]() | RS为自放电电阻 | 相比于PNGV模型考虑了电池自放电问题和负载电流随时间累计引起的开路电压变化问题;估算精度更高,适用性更广 | 相比于PNGV模型,计算更复杂,计算量更大 |
表2
电池不同SOH估计方法优缺点比较"
电池SOH估计方法 | 优点 | 缺点 | |
---|---|---|---|
实验法 | 安时积分法 | 估算非常准确 | 测试时间长,会导致容量衰减,仅适用于特定实验室条件 |
欧姆内阻法 | 简单易行、快速 | 不太准确 | |
电化学阻抗谱法 | 估算准确,反映信息全 | 实施过程复杂、需要专业仪器、成本较高 | |
容量增量法 | 对电池类型不敏感,并能有效识别容量损失机制,精确获取电池内丰富的电化学反应信息 | 受电流大小、采样频率和噪声的影响 | |
模型法 | 经验模型法 | 建模难度低,应用范围广 | 缺乏清晰的物理含义,精度低,不能考虑运行工况、受环境影响 |
等效电路模型法 | 利用电路元件建模简单,可实现在线预测 | 工况复杂时不适用;精度低 | |
电化学模型法 | 预测精度高,可以给出电池退化的详细解释 | 模型参数多,建模困难、计算量大,鲁棒性差 | |
卡尔曼滤波及变体 粒子滤波 | 适用于实时处理,预测精度高 概率预测,表达不确定性能力强 | 方法复杂,计算量大,初始化过程复杂;退化模型的建立应准确 | |
数据驱动法 | 人工神经网络 | 具有非线性特征和自学能力 | 需要大量数据训练,精度受训练数据和训练方法影响大,不适合小样本 |
支持向量机 | 计算量小,预测精度高 | 长期预测效果不佳、适用于小样本 | |
模糊逻辑 | 可对复杂的非线性系统进行建模 | 自学习能力和适应能力较弱 | |
高斯过程回归 | 适用于小样本、高维的回归问题;适应性强 | 计算复杂度高、抗干扰性差 | |
融合法 | 模型法与数据驱动法融合 | 精度更高、增加了模型可解释性 | 计算复杂度高 |
多种数据驱动法融合 | 精度更高、泛化能力更强 | 输入数据量大,计算复杂度高 |
[1] | ZHONG R, DU C Q. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries[J]. Energy Reports, 2023,9:2993-3021. |
[2] | XIAO Y Q, WEN J S, YAO L. A comprehensive review of the lithium-ion battery state of health prognosis methods combining aging mechanism analysis[J]. Journal of Energy Storage, 2023,65:107347. |
[3] |
梁新成, 张勉, 黄国钧, 等. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6):1933-1939.
doi: 10.19799/j.cnki.2095-4239.2020.0166 |
LIANG Xincheng, ZHANG Mian, HUANG Guojun, et al. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6):1933-1939.
doi: 10.19799/j.cnki.2095-4239.2020.0166 |
|
[4] | 董海斌, 羡学磊, 马建琴, 等. 锰酸锂电池热失控特性研究[J]. 消防科学与技术, 2022, 41(1):21-25. |
DONG Haibin, XIAN Xuelei, MA Jianqin, et al. Research on thermal runaway characteristics of lithium manganate battery[J]. Fire Science and Technology, 2022, 41(1):21-25.
doi: 10.3210/fst.41.21 |
|
[5] | 薄利明, 郑惠萍, 张世锋, 等. 锂电池健康状态均衡技术综述[J]. 电测与仪表, 2022,4:11-18. |
BO Liming, ZHENG Huiping, ZHANG Shifeng, et al. Review on health state equalization technology for lithium batteries[J]. Electrical Measurement & Instrumentation, 2022,4:11-18. | |
[6] |
TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries:Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261(10):120813.
doi: 10.1016/j.jclepro.2020.120813 |
[7] | PASTOR-FERNANDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017,360:301-318. |
[8] | CHRISTOPH R B, MATTHEW R R, EUAN M, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017,341:373-386. |
[9] | CUI Y Z, DU C Y, YIN G P, et al. Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge[J]. Journal of Power Sources, 2015,279:123-132. |
[10] | JIANG S D, SONG Z X. A review on the state of health estimation methods of lead-acid batteries[J]. Journal of Power Sources, 2022,517:1-18. |
[11] | 梁培维, 张彦会. 基于欧姆内阻对锂电池健康状态的估算[J]. 电源技术, 2019, 43(10):1623-1704. |
LIANG Peiwei, ZHANG Yanhui. Estimation of lithium battery health based on ohmic internal resistance[J]. Chinese Journal of Power Sources, 2019, 43(10):1623-1704. | |
[12] | GALEOTTI M, CINÀ L, GIAMMANCO C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015,89:678-686. |
[13] | XIA F, WANG K G, CHEN J J. State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage[J]. Journal of Energy Storage, 2023,64:107161. |
[14] | LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018,373:40-53. |
[15] | ZHENG Y J, OUYANG M G, LI X J, et al. Recording frequency optimization for massive battery data storage in battery management systems[J]. Applied Energy, 2016,183:380-389. |
[16] | HUANG S, LIU C, SUN H, et al. State of health estimation of lithium-ion batteries based on the regional frequency[J]. Journal of Power Sources, 2022,518:230773. |
[17] | ZHANG Y, CAI Y X, LIU W, et al. State of health estimation of lithium-ion batteries based on the regional triangle[J]. Journal of Energy Storage, 2023,69:107918. |
[18] | CHE Y H, HU X S, LIN X K, et al. Health prognostics for lithium-ion batteries:Mechanisms,methods,and prospects[J]. Energy & Environmental Science, 2023,16:338-371. |
[19] | 吴盛军, 袁晓冬, 徐青山, 等. 锂电池健康状态评估综述[J]. 电源技术, 2017, 41(12):1788-1792. |
WU Shengjun, YUAN Xiaodong, XU Qingshan, et al. Review on lithium-ion battery health state assessment[J]. Chinese Journal of Power Sources, 2017, 41(12):1788-1792. | |
[20] | 高仁璟, 吕治强, 赵帅, 等. 基于电化学模型的锂离子电池健康状态估算[J]. 北京理工大学学报, 2022, 42(9):791-797. |
GAO Renjing, LÜ Zhiqiang, ZHAO Shuai, et al. Health state estimation of Li-ion batteries based on electrochemical model[J]. Transactions of Beijing Institute of Technology, 2022, 42(9):791-797. | |
[21] | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7):1703-1725. |
WU Longxing, PANG Hui, JIN Jiamin, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1703-1725. | |
[22] |
REN L C, ZHU G R, KANG J Q, et al. An algorithm for state of charge estimation based on a single particle model[J]. Journal of Energy Storage, 2021, 39(7):102644-102651.
doi: 10.1016/j.est.2021.102644 |
[23] | TOPAN P A, RAMADAN M N, FATHONI G, et al. State of charge (SOC) and state of health (SOH) estimation on lithium polymer battery via Kalman filter[C]// 2016 2nd International Conference on Science and Technology-Computer (ICST), October 27-28,2016,Yogyakarta,Indonesia. IEEE,2016:93-96. |
[24] | 赵可沦, 江境宏, 邓进, 等. 基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法[J]. 电子测量技术, 2022, 45(23):53-58. |
ZHAO Kelun, JIANG Jinghong, DENG Jin, et al. Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least square[J]. Electronic Measurement Technology, 2022, 45(23):53-58. | |
[25] | KIM T, WANG Y, SAHINOGLU Z, et al. Fast UD factorization based RLS online parameter identification for model-based condition monitoring of lithium-ion batteries[C]// 2014 American Control Conference,June 04-06,2014,Portland,OR,USA. IEEE,2014:4410-4415. |
[26] | 孙金磊, 唐传雨, 李磊, 等. 基于状态与模型参数联合估计的老化电池可充入电量估计方法[J]. 电工技术学报, 2022, 37(22):5886-5898. |
SUN Jinlei, TANG Chuanyu, LI Lei, et al. An estimation method of rechargeable electric quantity for aging battery based on joint estimation of state and model parameters[J]. Transactions of China Electrotechnical Society, 2022, 37(22):5886-5898. | |
[27] |
HU X S, CHE Y H, LIN X K, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2):382-398.
doi: 10.1109/TTE.2020.3017090 |
[28] | 车云弘, 邓忠伟, 李佳承, 等. 基于数据驱动的电池系统泛化SOH估计方法[J]. 机械工程学报, 2022, 58(20):253-263. |
CHE Yunhong, DENG Zhongwei, LI Jiacheng, et al. Generalized data-driven SOH estimation method for battery systems[J]. Journal of Mechanical Engineering, 2022, 58(20):253-263. | |
[29] | GRANDJEAN L L, ODIO M X, WIDANAGE W D. Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC),2019:1-7. |
[30] | LI J, ADEWUYI K, LOTFI N. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018,212:178-190. |
[31] | 刘征宇, 杨昆, 魏自红. 包含液相扩散方程简化的锂离子电池电化学模型[J]. 物理学报, 2019, 68(9):251-258. |
LIU Zhengyu, YANG Kun, WEI Zihong. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation[J]. Acta Physica Sinica, 2019, 68(9):251-258. | |
[32] | LV C, LAI Q Z, GE T F. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework[J]. Energy, 2017,124:975-984. |
[33] | 郭桐, 刘涛, 方德宇, 等. 锂离子电池健康评估研究进展[J]. 电池工业, 2023, 27(1):48-54. |
GUO Tong, LIU Tao, FANG Deyu, et al. Research progress in health assessment of lithium-ion batteries[J]. Chinese Battery Industry, 2023,2023, 27(1):48-54. | |
[34] | SHRIVASTAVA P, NAIDU P A, SHARMA S, et al. Review on technological advancement of lithium-ion battery states estimation methods for electric vehicle applications[J]. Journal of Energy Storage, 2023,64:107159. |
[35] |
SONG Y C, LIU D T, HOU Y D, et al. Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm[J]. Chinese Journal of Aeronautics, 2018, 31(1):31-40.
doi: 10.1016/j.cja.2017.11.010 |
[36] | 邓涛, 罗卫兴, 李志飞, 等. 双卡尔曼滤波法估计电动汽车电池健康状态[J]. 电池, 2018, 48(2):95-99. |
DENG Tao, LUO Weixing, LI Zhifei, et al. Estimation state of health of electric vehicle battery by dual Kalman filter[J]. Battery Bimonthly, 2018, 48(2):95-99. | |
[37] | FANG L L, LI J Q, PENG B, et al. Online estimation and error analysis of both SOC and SOH of lithium-ion battery based on DEKF method[J]. Energy Procedia,2019:158:3008-3013. |
[38] | BI J, ZHANG T, YU H Y, et al. State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter[J]. Applied Energy, 2016,182:558-568. |
[39] |
李鹏, 李立伟, 杨玉新. 基于IBOA-PF的锂电池健康状态预测[J]. 储能科学与技术, 2021, 10(2):705-713.
doi: 10.19799/j.cnki.2095-4239.2020.0391 |
LI Peng, LI Liwei, YANG Yuxin. Estimation of lithium-ion battery state of health based on IBOA-PF[J]. Energy Storage Science and Technology, 2021, 10(2):705-713.
doi: 10.19799/j.cnki.2095-4239.2020.0391 |
|
[40] | SCHWUNK S, ARMBRUSTER N, STRAUB S, et al. Particle filter for state of charge and state of health estimation for lithium-ion phosphate batteries[J]. Journal of Power Sources, 2013,239:705-710. |
[41] | LIU Yuefeng, HE Yingjie, BIAN Haodong, et al. A review of lithium-ion battery state of charge estimation based on deep learning:Directions for improvement and future trends[J]. Journal of Energy Storage, 2022,52:104664. |
[42] |
李建林, 肖珩. 锂离子电池建模现状综述[J]. 储能科学与技术, 2022, 11(2):697-703.
doi: 10.19799/j.cnki.2095-4239.2021.0450 |
LI Jianlin, XIAO Heng. Review on modeling of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(2):697-703.
doi: 10.19799/j.cnki.2095-4239.2021.0450 |
|
[43] | 徐元中, 曹翰林, 吴铁洲. 基于SA-BP神经网络算法的电池SOH预测[J]. 电源技术, 2020, 44(3):341-345. |
XU Yuanzhong, CAO Hanlin, WU Tiezhou. Estimation of SOH for battery based on SA-BP neural network[J]. Chinese Journal of Power Sources, 2020, 44(3):341-345. | |
[44] | 李文华, 邵方旭, 暴二平, 等. 六自由度振动老化条件下锂离子电池的衰退机理诊断与SOH预测[J]. 仪器仪表学报, 2021, 41(8):62-69. |
LI Wenhua, SHAO Fangxu, BAO Erping, et al. Diagnosis of degradation mechanism and SOH prediction of lithium-ion batteries under 6-DOF vibration and aging conditions[J]. Chinese Journal of Scientific Instrument, 2021, 41(8):62-69. | |
[45] | 徐彬翔, 郑林锋, 黄乙恒, 等. 基于改进最小二乘支持向量机的锂离子电池健康状态快速估计方法[J]. 电气工程学报, 2022, 17(4):11-19. |
XU Binxiang, ZHENG Linfeng, HUANG Yiheng, et al. Fast estimating the state of health of lithium-ion batteries based on improved least squares support vector machine[J]. Journal of Electrical Engineering, 2022, 17(4):11-19. | |
[46] | 陈璐, 于仲安, 熊莹燕. 不同温度下基于PSO-LSSVM的锂电池SOH估计与RUL预测[J]. 传感器与微系统, 2023, 42(6):141-145. |
CHEN Lu, YU Zhongan, XIONG Yingyan. SOH estimation and RUL prediction of Li battery based on PSO-LSSVM at different temperatures[J]. Transducer and Microsystem Technologies, 2023, 42(6):141-145. | |
[47] | SALKIND A J, FENNIE C, SINGH P, et al. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J]. Journal of Power Sources, 1999,80:293-300. |
[48] | HE T T, XU Z P, XIE Q, et al. A method of battery capacity prediction based on fuzzy logic and neural networks[J]. Earth and Environmental Science, 2020,558:052015. |
[49] | 樊欣欣, 陈秀国, 王建宾, 等. 基于模糊逻辑的变电站蓄电池在线健康状态评估[J]. 电子器件, 2021, 44(1):136-140. |
FAN Xinxin, CHEN Xiuguo, WANG Jianbin, et al. On-line health assessment of substation battery based on fuzzy logic[J]. Chinese Journal of Electron Devices, 2021, 44(1):136-140. | |
[50] | 吕佳朋, 史贤俊, 王康. 基于高斯过程回归的电池容量预测模型[J]. 电子测量技术, 2020, 43(3):43-48. |
LÜ Jiapeng, SHI Xianjun, WANG Kang. Battery capacity prediction model based on Gaussian process regression[J]. Electronic Measurement Technology, 2020, 43(3):43-48. | |
[51] |
陈琳, 刘博豪, 丁云辉, 等. 采用粒子群优化和高斯回归实现电池SOH估计[J]. 汽车工程, 2021, 43(10):1472-1478.
doi: 10.19562/j.chinasae.qcgc.2021.10.008 |
CHEN Lin, LIU Bohao, DING Yunhui, et al. Estimation of battery state-of-health using particle swarm optimization with Gauss process regression[J]. Automotive Engineering, 2021, 43(10):1472-1478. | |
[52] | 张兴红, 徐翊, 巩泽浩, 等. 融合电化学阻抗与容量增量曲线特征的锂电池健康状态算法研究[J]. 重庆理工大学学报, 2023, 37(5):265-272. |
ZHANG Xinghong, XU Yi, GONG Zehao, et al. Algorithm research on health state of a lithium battery by integrating the features of electrochemical impedance and incremental capacity curves[J]. Journal of Chongqing University of Technology, 2023, 37(5):265-272. | |
[53] | CHEN Liping, XIE Siqiang, ANTÓNIO M L, et al. A new SOH estimation method for Lithium-ion batteries based on model-data-fusion[J]. Energy, 2024,286:129597. |
[54] | HE Jiabei, TIAN Yi, WU Lifeng. A hybrid data-driven method for rapid prediction of lithium-ion battery capacity[J]. Reliability Engineering and System Safety, 2022,226:108674. |
[55] | MA Zeyu, YANG Ruixin, WANG Zhenpo. A novel data-model fusion state-of-health estimation approach for lithiumion batteries[J]. Applied Energy, 2019,237:836-847. |
[56] | HOU Y K, ZANG Z S, LIU P, et al. Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles[J]. Advances in Mechanical Engineering, 2021, 13(7):1-14. |
[57] | 王萍, 彭香园, 程泽, 等. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3):362-378. |
WANG Ping, PENG Xiangyuan, CHENG Ze, et al. A multi-time scale joint state estimation method for lithium-ion batteries based on data-driven model fusion[J]. Automotive Engineering, 2022, 44(3):362-378. | |
[58] | 崔显, 陈自强. 基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法[J/OL]. 上海交通大学学报:1-23[2023-03-10]. https://doi.org/10.16183/j.cnki.jsjtu.2022.221.. |
CUI Xian, CHEN Ziqiang. et al. A highly robust state of health estimation method of lithium-ion battery based on ECM and SGPR[J/OL]. Journal of Shanghai Jiaotong University:1-23[2023-03-10]. https://doi.org/10.16183/j.cnki.jsjtu.2022.221.. | |
[59] | CHEN Dan, MENG Jinhao, HUANG Huanyang, et al. An empirical-data hybrid driven approach for remaining useful life prediction of lithium-ion batteries considering capacity diving[J]. Energy, 2022,245:123222. |
[60] | 陈国麟, 姚行艳. 基于CNN-Transformer的锂离子电池健康状态估计[J]. 重庆工商大学学报, 2024, 41(2):66-73. |
CHEN Guolin, YAO Xingyan. State of health estimation of lithium-ion battery based on CNN-Transformer[J]. Journal of Chongqing Technology and Business University, 2024, 41(2):66-73. | |
[61] | 倪祥淦, 何志刚, 胡帅, 等. 基于BI-LSTM神经网络的宽采样频率电池SOH估算[J]. 车用发动机, 2022(5):44-50. |
NI Xianggan, HE Zhigang, HU Shuai, et al. Battery SOH estimation with wide sampling frequency based on BI-LSTM neural network[J]. Vehicle Engine, 2022(5):44-50. | |
[62] | YU J. State of health prediction of lithium-ion batteries:Multiscale logic regression and Gaussian process regression ensemble[J]. Reliability Engineering & System Safety, 2018,174:82-95. |
[63] | LIN M Q, WU D G, MENG J H, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. Journal of Power Sources, 2022,518:230774. |
[64] | 蔡艳平, 陈万, 苏延召, 等. 锂离子电池剩余寿命预测方法综述[J]. 电源技术, 2021, 45(5):678-682. |
CAI Yanping, CHEN Wan, SU Yanzhao, et al. Review of remaining useful life prediction for lithium ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(5):678-682. | |
[65] |
WEI Zhongbao, LENG Feng, HE Zhongjie, et al. Online state of charge and state of health estimation for lithium-ion battery based on a data-model fusion method[J]. Energies, 2018, 11(7):1810-1823.
doi: 10.3390/en11071810 |
[66] | 晏莉琴, 马尚德, 罗英, 等. 锂离子电池快速寿命评价技术与方法[J]. 上海航天, 2023, 40(1):123-135. |
YAN Liqin, MA Shangde, LUO Ying, et al. Overview of rapid lifetime evaluation technologies and methods for lithium-ion batteries[J]. Aerospace Shanghai, 2023, 40(1):123-135. | |
[67] | HONG Shiding, QIN Chaokui, LAI Xin, et al. State-of- health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm[J]. Journal of Energy Storage, 2023,64:107179. |
[68] |
王震坡, 王秋诗, 刘鹏, 等. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2):151-168.
doi: 10.3901/JME.2023.02.151 |
WANG Zhenpo, WANG Qiushi, LIU Peng, et al. Review on techniques for power battery state of health estimation driven by big data methods[J]. Journal of Mechanical Engineering, 2023, 59(2):151-168.
doi: 10.3901/JME.2023.02.151 |
[1] | 于淼, 朱昱豪, 顾鑫, 商云龙. 基于膨胀应力的锂离子电池剩余使用寿命预测*[J]. 电气工程学报, 2024, 19(1): 49-56. |
[2] | 朱昱豪, 汪腾, 顾鑫, 侯林飞, 商云龙. 锂离子电池全寿命周期个性化退役与评价方法*[J]. 电气工程学报, 2024, 19(1): 79-86. |
[3] | 杨续来, 袁帅帅, 杨文静, 刘闯, 杨世春. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254. |
[4] | 李小宁, 高朝晖, 王爽, 汤孝, 李一卓. 飞机主电源系统关键器件健康状态评估研究[J]. 电气工程学报, 2023, 18(4): 188-198. |
[5] | 周航, 刘晓龙, 张梦迪, 孙金磊, 程泽. 基于简单循环单元的储能锂离子电池SOC和SOH联合估计方法*[J]. 电气工程学报, 2023, 18(3): 332-340. |
[6] | 王震坡, 王秋诗, 刘鹏, 张照生. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2): 151-168. |
[7] | 刘新华, 郭斌, 何瑢, 贾璞, 刘小川, 郭亚周, 杨世春. 轻型无人机电池动态冲击性能研究[J]. 机械工程学报, 2023, 59(2): 177-186. |
[8] | 燕润博, 孙立清, 杨瑞鑫, 熊瑞. 锂离子电池外部短路电压行为预测模型评价[J]. 机械工程学报, 2023, 59(2): 199-211. |
[9] | 魏中宝, 钟浩, 何洪文. 基于多物理过程约束的锂离子电池优化充电方法[J]. 机械工程学报, 2023, 59(2): 223-232. |
[10] | 刘逸群, 李猛猛, 刘涛, 杨娜, 李卫华, 王剑锋. 电流信号采样偏差下动力电池荷电状态估计研究[J]. 机械工程学报, 2023, 59(16): 288-299. |
[11] | 谢家乐, 李增超, 王光, 姚天琪. 基于电热耦合效应的18650锂离子电池内外温度预测模型[J]. 机械工程学报, 2023, 59(16): 342-352. |
[12] | 郭锐, 王涛, 李永涛, 王建伟, 蔡伟, 赵静一. 基于贝叶斯深度学习的外啮合齿轮泵健康状态识别研究[J]. 机械工程学报, 2023, 59(16): 397-405. |
[13] | 郭锐, 张印浩, 牛雯雯, 骆雄帅, 蔡伟, 王建伟, 王岳峰, 赵静一. 基于GLCT及CPA-SVM的变转速齿轮泵健康状态分类研究[J]. 机械工程学报, 2023, 59(14): 310-319. |
[14] | 杨世春, 周思达, 周新岸, 李强伟, 陈飞, 曹耀光. 动力电池云端管理关键技术研究综述[J]. 机械工程学报, 2023, 59(10): 134-151. |
[15] | 张宇鑫, 武建华, 郑林锋, 叶涛. 基于数字孪生的锂离子电池管理系统设计分析*[J]. 电气工程学报, 2022, 17(4): 103-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||