[1] |
缪平, 姚祯, LEMMON J, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3):670-678.
|
|
MIAO Ping, YAO Zhen, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3):670-678.
|
[2] |
欧阳明高. 能源革命与新能源智能汽车[J]. 中国工业和信息化, 2019(11):21-24.
|
|
OUYANG Minggao. Energy revolution and new energy intelligent vehicles[J]. China Industry and Information Technology, 2019(11):21-24.
|
[3] |
LIN C P, CABRERA J, YANG F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275:115338.
doi: 10.1016/j.apenergy.2020.115338
|
[4] |
陈猛, 乌江, 焦朝勇, 等. 锂离子电池健康状态多因子在线估计方法[J]. 西安交通大学学报, 2020, 54(1):169-175.
|
|
CHEN Meng, WU Jiang, JIAO Chaoyong, et al. Multi-factor online estimation method for health status of lithium-ion battery[J]. Journal of Xi’an Jiaotong University, 2020, 54(1):169-175.
|
[5] |
戴海峰, 魏学哲, 孙泽昌. 基于等效电路的内阻自适应锂离子电池模型[J]. 同济大学学报, 2010, 38(1):98-102.
|
|
DAI Haifeng, WEI Xuezhe, SUN Zechang. An inner resistance adaptive model based on equivalent circuit of lithium-ion batteries[J]. Journal of Tongji University, 2010, 38(1):98-102.
|
[6] |
魏克新, 陈峭岩. 基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计[J]. 中国电机工程学报, 2014, 34(3):445-452.
|
|
WEI Kexin, CHEN Qiaoyan. States estimation of Li-ion power batteries based on adaptive unscented Kalman filters[J]. Proceedings of the CSEE, 2014, 34(3):445-452.
|
[7] |
韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12):4038-4044.
|
|
WEI Haiyan, CHEN Xiaojie, LÜ Zhiqiang, et al. Online estimation of lithium-ion battery state of health using grey neural network[J]. Power System Technology, 2017, 41(12):4038-4044.
|
[8] |
SIHVO J, ROINILA T, STROE D I. SOH analysis of Li-ion battery based on ECM parameters and broadband impedance measurements[C]// IECON2020:The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020:1923-1928.
|
[9] |
SANKARASUBRAMANIAN S, KRISHNAMURTHY B. A capacity fade model for lithium-ion batteries including diffusion and kinetics[J]. Electrochimica Acta, 2012, 70:248-254.
doi: 10.1016/j.electacta.2012.03.063
|
[10] |
GAO Y Z, ZHANG X, YANG J, et al. Estimation of state-of-charge and state-of-health for lithium-ion degraded battery considering side reactions[J]. Journal of the Electrochemical Society, 2018, 165(16):A4018-A4026.
doi: 10.1149/2.0981816jes
|
[11] |
LOTFI N, LI J, LANDERS R G, et al. Li-ion battery state of health estimation based on an improved single particle model[C]// 2017 American Contrl. Conference, 2017:86-91.
|
[12] |
ALLAM A, ONORI S. Online capacity estimation for lithium-ion battery cells via an electrochemical model-based adaptive interconnected observer[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4):1639-1651.
|
[13] |
潘海鸿, 吕治强, 付兵, 等. 采用极限学习机实现锂离子电池健康状态在线估算[J]. 汽车工程, 2017, 39(12):1375-1381,1396.
|
|
PAN Haihong, LÜ Zhiqiang, FU Bing, et al. Online estimation of lithium battery’s state of health using extreme learning machine[J]. Automotive Engineering, 2017, 39(12):1375-1381,1396.
|
[14] |
SHEN S, SADOUGHI M, CHEN X, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. The Journal of Energy Storage, 2019, 25:100817.
doi: 10.1016/j.est.2019.100817
|
[15] |
GUO P, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412:442-450.
doi: 10.1016/j.jpowsour.2018.11.072
|
[16] |
SHU X, LI G, SHEN J, et al. An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation[J]. Journal of Power Sources, 2020, 462:228132.
doi: 10.1016/j.jpowsour.2020.228132
|
[17] |
贾俊, 胡晓松, 邓忠伟, 等. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14):141-149,159.
doi: 10.3901/JME.2021.14.141
|
|
JIA Jun, HU Xiaosong, DENG Zhongwei, et al. Data-driven comprehensive evaluation of lithium-ion battery state of health and abnormal battery screening[J]. Journal of Mechanical Engineering, 2021, 57(14):141-149,159.
doi: 10.3901/JME.2021.14.141
|
[18] |
HU X, CHE Y, LIN X, et al. Health prognosis for electric vehicle battery packs:A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6):2622-2632.
doi: 10.1109/TMECH.2020.2986364
|
[19] |
WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 2017, 5:21286-21295.
doi: 10.1109/ACCESS.2017.2759094
|
[20] |
KATTERNBORN T, LEITLOFF J, SCHIEFER F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173:24-49.
doi: 10.1016/j.isprsjprs.2020.12.010
|
[21] |
LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries:A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113:109254.
doi: 10.1016/j.rser.2019.109254
|
[22] |
LEI Y G, LI N P, GUO L, et al. Machinery health prognostics:A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104:799-834.
doi: 10.1016/j.ymssp.2017.11.016
|
[23] |
叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测[J]. 物理学报, 2005, 54(6):2568-2573.
|
|
YE Meiying, WANG Xiaodong, ZHANG Haoran, et al. Chaotic time series prediction based on online least squares support vector machine regression[J]. Acta Physica Sinica, 2005, 54(6):2568-2573.
doi: 10.7498/aps.54.2568
|
[24] |
ZHAO Y P, WANG J J, LI X Y, et al. Extended least squares support vector machine with applications to fault diagnosis of aircraft engine[J]. ISA Transactions, 2020, 97:189-201.
doi: 10.1016/j.isatra.2019.08.036
|
[25] |
YANG D, ZHANG X, PAN R, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384:387-395.
doi: 10.1016/j.jpowsour.2018.03.015
|
[26] |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4:383-391.
doi: 10.1038/s41560-019-0356-8
|
[27] |
BOLE B, KULKARNI C S, DAIGLE M. Adaptation of an electrochemistry-based Li-ion battery model to account for deterioration observed under randomized use[C]// Annual Conference of the Prognostics and Health Management Society, 2014, 6(1):2490.
|
[28] |
阎威武, 邵惠鹤. 支持向量机和最小二乘支持向量机的比较及应用研究[J]. 控制与决策, 2003(3):358-360.
|
|
YAN Weiwu, SHAO Huihe. Application of support vector machines and least squares support vector machines to heart disease diagnoses[J]. Control and Decision, 2003(3):358-360.
|
[29] |
顾燕萍, 赵文杰, 吴占松. 最小二乘支持向量机的算法研究[J]. 清华大学学报, 2010, 50(7):1063-1066,1071.
|
|
GU Yanping, ZHAO Wenjie, WU Zhansong. Least squares support vector machine algorithm[J]. Journal of Tsinghua University, 2010, 50(7):1063-1066,1071.
|