电气工程学报 ›› 2022, Vol. 17 ›› Issue (4): 2-10.doi: 10.11985/2022.04.002

• 特邀专栏:电化学储能系统安全管理与运维 • 上一篇    下一篇

扫码分享

基于iCEEMDAN和迁移学习的锂离子电池SOH估计*

杨淞元1(), 田勇1(), 田劲东1,2()   

  1. 1.深圳大学物理与光电工程学院 深圳 518060
    2.人工智能与数字经济广东省实验室(深圳) 深圳 518132
  • 收稿日期:2022-08-25 修回日期:2022-10-24 出版日期:2022-12-25 发布日期:2023-02-03
  • 通讯作者: 田勇,男,1985年生,副教授,硕士研究生导师。主要研究方向为新能源汽车动力电池系统建模与状态估计,无线电能传输。E-mail:ytian@szu.edu.cn
  • 作者简介:杨淞元,女,1998年生,硕士研究生。主要研究方向为基于数据驱动的锂离子电池健康状态预测。E-mail:2110456052@email.szu.edu.cn
    田劲东,男,1973年生,教授,博士研究生导师。主要研究方向为人工智能技术及其应用,光学测量技术与仪器。E-mail:jindt@szu.edu.cn
  • 基金资助:
    *人工智能与数字经济广东省实验室(深圳)开放课题资助项目(GML-KF-22-19)

State of Health Estimation of Lithium-ion Batteries Based on iCEEMDAN and Transfer Learning

YANG Songyuan1(), TIAN Yong1(), TIAN Jindong1,2()   

  1. 1. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060
    2. Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen 518132
  • Received:2022-08-25 Revised:2022-10-24 Online:2022-12-25 Published:2023-02-03
  • Contact: TIAN Yong, E-mail:ytian@szu.edu.cn

摘要:

目前数据驱动的锂离子电池健康状态(State of health,SOH)估计方法已成为研究热点,但实车应用中产生的小样本数据问题会导致数据驱动模型精度低、泛化能力差等问题,由此提出一种基于特征模态分解及迁移学习的SOH估计方法。首先,从电池小样本数据片段中提取健康特征,通过改进的自适应噪声完备集合经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise,iCEEMDAN)分离出本征模态分量(Intrinsic mode function,IMF)与残余分量(Res)两类包含不同特征信息的分量;然后将分解优化后的特征信息分别通过LSTM网络和BP网络进行针对性训练,构建特征信息与电池SOH的关联模型;最后将模型迁移至其他数据集估计电池的SOH。基于NASA公开电池数据集的试验结果表明,所提方法具有高准确度及泛化能力,估计的平均绝对误差(MAE)和方均根误差(RMSE)分别为2.34%和3.05%,迁移后的MAE和RMSE分别为1.13%和1.68%。

关键词: 健康状态, iCEEMDAN, 数据驱动, 迁移学习, 小样本数据

Abstract:

The data-driven method for state of health(SOH) of lithium-ion batteries is currently a research hotspot. For electric vehicle applications, however, it has to face the challenge of small sample data, which leads to low accuracy and poor generalization. A SOH estimation method based on feature mode decomposition and transfer learning is proposed. Firstly, health features are extracted from a small section of the battery data set, and then they are divided into the intrinsic mode function(IMF) part and the residual signal(RES) part by using the improved complete ensemble empirical mode decomposition with adaptive noise(iCEEMDAN). Secondly, the IMF and RES parts are trained through a long short-term memory network and a back-propagation network, respectively, achieving a combined base model between the health features and the SOH. Finally, the base model is transferred to other data sets for SOH estimation. Validation results based on the NASA battery data set show that the proposed method performs high accuracy and generalization ability. The mean absolute error(MAE) and root mean square error(RMSE) are about 2.34% and 3.05%, respectively. With transfer learning, the MAE and RMSE are reduced to 1.13% and 1.68%, respectively.

Key words: Key words:State of health, iCEEMDAN, data-driven, transfer learning, small sample data

中图分类号: