电气工程学报 ›› 2023, Vol. 18 ›› Issue (4): 209-216.doi: 10.11985/2023.04.023

• 电力系统 • 上一篇    下一篇

扫码分享

基于Adam优化的改进PSO-RBF牵引变压器故障诊断研究*

邵宁宁1(), 王英1,2()   

  1. 1.兰州交通大学自动化与电气工程学院 兰州 730070
    2.兰州交通大学光电技术与智能控制教育部重点实验室 兰州 730070
  • 收稿日期:2022-10-26 修回日期:2023-07-11 出版日期:2023-12-25 发布日期:2024-01-12
  • 作者简介:邵宁宁,男,1994年生,硕士。主要研究方向为牵引变压器故障诊断。E-mail:1316574327@qq.com
    王英,男,1978年生,博士,副教授。主要研究方向为高速铁路动车组可靠供电控制与预测。E-mail:254043274@qq.com
  • 基金资助:
    *国家自然科学基金资助项目(52067013)

Research on PSO-RBF Traction Transformer Fault Diagnosis Based on Adam Optimization

SHAO Ningning1(), WANG Ying1,2()   

  1. 1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070
    2. Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry of Education,Lanzhou Jiaotong University, Lanzhou 730070
  • Received:2022-10-26 Revised:2023-07-11 Online:2023-12-25 Published:2024-01-12

摘要:

牵引变压器作为铁路供电的重要设备,承担着电气化铁路电力输送和电压转换的重要作用,其运行情况决定了整个牵引供电系统的安全稳定运行。由于牵引变压器运行环境恶劣,运行时同时受“电-磁-力-热”等多种内外应力,而且负载特性复杂,使得牵引变压器的故障诊断难度增大。对牵引变压器的故障诊断研究,不仅可以在牵引变压器发生故障前及时进行预警,而且可以为牵引变压器的检修提供充分的理论支撑,从而提高铁路供电系统的安全性和可靠性。把基于经典动量概念的Adam优化算法与PSO算法相结合,提出了一种基于油中溶解气体的牵引变压器故障诊断的新方法。首先构建PSO-RBF牵引变压器故障诊断模型,通过加速因子非线性搭配的仿真,采用非线性指数递减搭配来提高粒子群的寻优能力。以某铁路局管辖内牵引变压器的故障数据来进行仿真分析,诊断结果验证了IPSO-RBF-Adam牵引变压器故障诊断模型的诊断率和稳定性优于PSO-RBF模型。

关键词: 牵引变压器, 故障诊断, RBF神经网络, PSO算法

Abstract:

Traction transformer, as an important equipment of railway power supply, plays an important role in power transmission and voltage conversion of electrified railway, and its operation determines the safety and stability operation of the whole traction power supply system. Due to the harsh operating environment of the traction transformer, it is also subjected to various internal and external stresses such as “electric-magnetic-force-thermal”, and complex load characteristics, which makes the difficulty of fault diagnosis of the traction transformer increased. The research on the fault diagnosis of traction transformers can not only give timely warning before the failure of traction transformer, but also can provide sufficient theoretical support for the overhaul of traction transformer, so as to improve the safety and efficiency of railway power supply. A new method for traction transformer fault diagnosis based on dissolved gas in oil is proposed by combining Adam optimization algorithm based on classical momentum concept with PSO algorithm. Firstly, a PSO-RBF traction transformer fault diagnosis model is constructed, through the simulation experiment of nonlinear acceleration factor collocation, the nonlinear exponential decreasing collocation is used to improve the optimization ability of particle swarm optimization. The IPSO-RBF-ADAM traction transformer fault diagnosis model is better than PSO-RBF model in diagnosis accuracy and stability by simulation analysis of traction transformer fault data under the jurisdiction of a railway bureau.

Key words: Traction transformer, fault diagnosis, RBF neural network, particle swarm optimization algorithm

中图分类号: