[1] |
李波. 智能牵引变压器故障诊断技术研究[J]. 铁道工程学报, 2020, 37(8):71-76.
|
|
LI Bo. Research on fault diagnosis technology of intelligent traction transformer[J]. Journal of Railway Engineering Society, 2020, 37(8):71-76.
|
[2] |
范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36(10):2161-2168.
|
|
FAN Xianhao, LIU Jiefeng, ZHANG Yiyi, et al. Evaluation of aging state of oil-immersed paper insulation of transformer by integrating frequency domain dielectric spectrum and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36(10):2161-2168.
|
[3] |
梁永亮, 郭汉琮, 薛永端. 基于特征气体关联特征的变压器故障诊断方法[J]. 高电压技术, 2019, 45(2):386-392.
|
|
LIANG Yongliang, GUO Hancong, XUE Yongduan. Transformer fault diagnosis method based on characteristic gas correlation characteristics[J]. High Voltage Engineering, 2019, 45(2):386-392.
|
[4] |
郭林, 唐晶, 唐黎哲, 等. 一种基于改进BP神经网络的变压器故障诊断方法[J]. 控制与信息技术, 2021(5):71-77.
|
|
GUO Lin, TANG Jing, TANG Lizhe, et al. A transformer fault diagnosis method based on improved BP neural network[J]. Control and Information Technology, 2021(5):71-77.
|
[5] |
王保义, 杨韵洁, 张少敏. 改进BP神经网络的SVM变压器故障诊断[J]. 电测与仪表, 2019, 56(19):53-58.
|
|
WANG Baoyi, YANG Yunjie, ZHANG Shaomin. SVM transformer fault diagnosis based on improved BP neural network[J]. Electrical Measurement and Instrument, 2019, 56(19):53-58.
|
[6] |
夏飞, 罗志疆, 张浩, 等. 混合神经网络在变压器故障诊断中的应用[J]. 电子测量与仪器学报, 2017, 31(1):118-124.
|
|
XIA Fei, LUO Zhijiang, ZHANG Hao, et al. Application of hybrid neural network in transformer fault diagnosis[J]. Journal of Electronic Measurement and Instrument, 2017, 31(1):118-124.
|
[7] |
张奎, 王建南, 王肖峰. 基于神经网络的变压器故障诊断[J]. 电子测量技术, 2017, 40(12):98-101.
|
|
ZHANG Kui, WANG Jiannan, WANG Xiaofeng. Transformer fault diagnosis based on neural network[J]. Electronic Measurement Technology, 2017, 40(12):98-101.
|
[8] |
KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceeding of IEEE International Conference on Neural Networks. Piscataway:IEEE, 1885,1492-1498.
|
[9] |
孟荣, 赵冀宁, 周通. 基于改进惯性权重粒子群算法的抢修小组快速调配策略[J]. 电网与清洁能源, 2021, 37(7):17-24.
|
|
MENG Rong, ZHAO Jining, ZHOU Tong. Rapid deployment strategy based on improved inertial weight particle swarm algorithm[J]. Power System and Clean Energy, 2021, 37(7):17-24.
|
[10] |
朱明星, 张德龙. RBF网络基函数中心选取算法的研究[J]. 安徽大学学报, 2000(1):72-78.
|
|
ZHU Mingxing, ZHANG Delong. Study of RBF network[J]. Journal of Anhui University, 2000(1):72-78.
|
[11] |
郭小艳. 改进粒子群优化RBF网络在变压器故障诊断中的应用[D]. 西安: 西安建筑科技大学, 2019.
|
|
GUO Xiaoyan. Application of improved particle swarm optimization RBF network in transformer fault diagnosis[D]. Xi’an: Xi’an University of Architecture and Technology, 2019.
|
[12] |
KINDMA D, BA J. A method for stochastic optimization[C]// Proceeding of the 3rd International Conference on Learning Representations, April 14-16,2014, San Diego. USA: Workshop Track, 2015:1-13.
|
[13] |
施恂山, 马宏忠, 张琳, 等. PSO改进RBPNN在变压器故障诊断中的应用[J]. 电力系统保护与控制, 2016, 44(17):39-44.
|
|
SHI Xunshan, MA Hongzhong, ZHANG Lin, et al. PSO improved application of RBPNN in transformer fault diagnosis[J]. Power System Protection and Control, 2016, 44(17):39-44.
|
[14] |
JIANG Yan, HAN Fei. A hybrid algorithm of adaptive particle swarm optimization based on adaptive moment estimation method[C]// International Conference on Intelligent Computing, March 10-12,2017, Bangkok. Huang DS: Bevilacqua V, 2017:7-20.
|
[15] |
TRAPPEY A J C, TRAPPEY C V, MA L, et al. Intelligent engineering asset management system for power transformer maintenance decision supports under various operating conditions[J]. Computers & Industrial Engineering, 2015, 84:3-11.
doi: 10.1016/j.cie.2014.12.033
|
[16] |
李笑竹, 陈志军, 樊小朝, 等. 基于ACS-SA文化基因算法的BP神经网络变压器故障诊断[J]. 高压电器, 2018, 54(2):134-146.
|
|
LI Xiaozhu, CHEN Zhijun, FAN Xiaochao, et al. Fault diagnosis of BP neural network transformer based on ACS-SA culture gene algorithm[J]. High Voltage Apparatus, 2018, 54(2):134-146.
|
[17] |
肖云波, 范菁, 张宜, 等. 基于改进粒子群算法与油中溶解气体的变压器故障诊断的研究[J]. 电子测量技术, 2021, 44(18):122-128.
|
|
XIAO Yunbo, FAN Jing, ZHANG Yi, et al. Based on improved particle swarm algorithm and transformer fault diagnosis of dissolved gas in oil[J]. Electronic Measurement Technology, 2021, 44(18):122-128.
|
[18] |
倪雪松. 基于动态阈值的牵引变压器故障诊断技术研究[D]. 成都: 西南交通大学, 2016.
|
|
NI Xuesong. Research on traction transformer failure diagnosis technology based on dynamic thresholding[D]. Chengdu: Southwest Jiaotong University, 2016.
|
[19] |
谢国民, 倪乐水, 曹媛. 基于VSRP与β-GWO-SVM的变压器故障辨识方法[J]. 高电压技术, 2021, 47(10):3635-3641.
|
|
XIE Guomin, NI Leshui, CAO Yuan. Transformer fault identification method based on VSRP and β-GWO-SVM[J]. High Voltage Engineering, 2021, 47(10):3635-3641.
|
[20] |
刘仲民, 翟玉晓, 张鑫, 等. 基于DBN-IFCM的变压器故障诊断方法[J]. 高电压技术, 2020, 46(12):4258-4265.
|
|
LIU Zhongmin, ZHAI Yuxiao, ZHANG Xin, et al. Transformer fault diagnosis method based on DBN-IFCM[J]. High Voltage Engineering, 2020, 46(12):4258-4265.
|
[21] |
王雨虹, 王志中, 付华, 等. 多策略改进麻雀算法与BiLSTM的变压器故障诊断研究[J]. 仪器仪表学报, 2022, 43(3):39-46.
|
|
WANG Yuhong, WANG Zhizhong, FU Hua, et al. Study of improving sparrow algorithm and BiLSTM[J]. Chinese Journal of Scientific Instrument, 2022, 43(3):39-46.
|
[22] |
谢乐, 衡熙丹, 刘洋, 等. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报, 2020, 54(11):2266-2272.
|
|
XIE Le, HENG Xidan, LIU Yang, et al. Transformer fault diagnosis based on linear discriminant analysis and step-wise machine learning[J]. Journal of Zhejiang University, 2020, 54(11):2266-2272.
|