电气工程学报 ›› 2023, Vol. 18 ›› Issue (3): 18-34.doi: 10.11985/2023.03.003
• 特邀专栏:电气化交通中的高压绝缘与防护新技术 • 上一篇 下一篇
收稿日期:
2023-06-15
修回日期:
2023-07-26
出版日期:
2023-09-25
发布日期:
2023-10-23
通讯作者:
吴淑群,男,1988年生,博士,教授。主要研究方向为高电压及放电等离子体应用。E-mail:wushuqun@nuaa.edu.cn
作者简介:
刘苏德,男,1999年生,硕士研究生。主要研究方向为空气电弧仿真与诊断。E-mail:liusudenuaa@nuaa.edu.cn
基金资助:
LIU Sude(), WANG Zixin, JING Ziyang, SHI Dawei, WU Shuqun(
)
Received:
2023-06-15
Revised:
2023-07-26
Online:
2023-09-25
Published:
2023-10-23
摘要:
在航空领域中,线缆电弧引发的电气火灾是一项严重的安全隐患。随着多电/全电飞机的发展,航空电气系统对电气设计、安装提出了更高的安全要求。本文对航空线缆电弧故障引发电气火灾的原因、机理、检测、预防和扑灭进行了综述。调查统计了欧洲空中航行安全组织公开数据中由线缆电弧引发的飞机火灾事故并分析其原因,介绍了电弧引燃线缆机理研究的近况,然后结合目前国内外飞机实际情况,讨论了航空线缆电弧引发电气火灾的预警技术和灭火技术。针对航空线缆绝缘失效以及布线不当易引发电气火灾问题提出了预防建议,强调了发展高可靠性且能作用于飞机所有电气设备电弧探测技术、火灾预警技术和灭火系统的重要性,同时也提出探测电弧火源引发航空线缆的机理研究仍存在挑战。
中图分类号:
刘苏德, 王子昕, 靖子洋, 施大伟, 吴淑群. 航空线缆电弧故障引发电气火灾研究综述*[J]. 电气工程学报, 2023, 18(3): 18-34.
LIU Sude, WANG Zixin, JING Ziyang, SHI Dawei, WU Shuqun. Review of Electrical Fires Caused by Cable Arcing Faults in Aviation[J]. Journal of Electrical Engineering, 2023, 18(3): 18-34.
表1
飞机线缆电弧火灾事故及直接原因"
年份 | 事故 | 直接原因 |
---|---|---|
1996 | TWA800,美国 | 绝缘失效 |
1998 | MD-11,加拿大 | 布线不当 |
1998 | B767-300,法国 | 绝缘失效 |
2002 | B737-400,英国 | 绝缘失效 |
2004 | Transall C-160,法国 | 绝缘失效 |
2006 | ATR42-300,瑞士 | 布线不当 |
2007 | B777-222,英国 | 布线不当 |
2009 | G-JEDI,英国 | 布线不当 |
2009 | A319,英国 | 布线不当 |
2011 | T153,俄罗斯 | 布线不当 |
2011 | B777-299,埃及 | 布线不当 |
2012 | F-22,美国 | 布线不当 |
2015 | DHC8-200,美国 | 布线不当 |
2016 | E190,美国 | 布线不当 |
2017 | B773,澳大利亚 | 布线不当 |
表2
航空航天用军标线缆[22]"
类型 | 型号 | 用途 | 标准 | 绝缘 | 护套 | 工作温度/℃ | 额定电压 | 标称截面/ mm2 |
---|---|---|---|---|---|---|---|---|
镀银铜芯聚四氟乙烯绝缘 电缆 | FF4-2(Q), FF4P21-2(Q), FF4P31-2((Q)) | 交流额定电压600 V及以下的飞机布线及电器设备 | GJB 773A/3A—2000 | PTFE | — | -65~+200 | 600 V/Q型为250 V | 0.08~8.0 |
FF4H3-2(Q), FF4P21H3-2(Q), FF4P31H3-2(Q), FF4P23H3-2(Q), FF4P33H3-2(Q) | FEP | |||||||
FF4P21H5-2(Q), FF4P31H5-2(Q), FF4H5-2(Q),FF4P23H5-2(Q), FF4P33H5-2(Q) | PTFE | |||||||
镀镍铜芯聚四氟乙烯绝缘 电缆 | FF4-3(Q), FF4P31-3((Q)) | 交流额定电压250 V及以下的飞机布线及电器设备 | GJB 773A/2A—2000 GJB 773A/4A—2000 | PTFE | — | -65~+260 | 600 V/Q型为250 V | 0.035~1.0 |
FF4H9-3(Q), FF4P31H9-3(Q), FF4P33H9-3(Q) | PFA | |||||||
FF4H5-3(Q), FF4P31H5-3(Q), FF4P33H5-3(Q) | PTFE | |||||||
镀锡铜芯聚全氟乙丙烯绝缘电缆 | FF46-1, FF46P11-1 | 可在高低温及各种恶劣环境中作电器、仪表、设备的电气连接 | GJB 773A/11A—2000 | FEP | — | -65~+200 | 600 V | 0.14~2.0 / 0.14~8.0 |
FF46H3-1, FF46P11H3-1, FF46P13H3-1 | FEP | |||||||
FF46H10-1, FF46P11H10-1, FF46P13H10-1 | ETFE | |||||||
镀银铜芯聚全氟乙丙烯绝缘电缆 | FF46-2, FF46P21-2, FF46P31-2 | 可在高低温及各种恶劣环境中作电器、仪表、设备的电气连接 | GJB 773A/8A—2000 | FEP | — | -65~+200 | 600 V | 0.14~8.0 |
FF46H3-2, FF46P21H3-2, FF46P31H3-2, FF46P23H3-2, FF46P33H3-2 | FEP | |||||||
镀银铜芯聚全氟乙丙烯绝缘轻型电缆 | FF46-2Q, FF46P21-2Q, FF46P31-2Q | 适用于交流额定电压250 V及以下的飞机布线、电器 设备 | GJB 773A/10A—2000 | FEP | — | -65~+200 | 250 V | 0.08~8.0 |
FF46H3-2Q, FF46P21H3-2Q, FF46P31H3-2Q, FF46P23H3-2Q, FF46P33H3-2Q | FEP | |||||||
FF46H6-2Q, FF46P21H6-2Q, FF46P31H6-2Q, FF46P23H6-2Q, FF46P33H6-2Q | PI/FEP 复合带 |
表3
电缆燃烧相关国际标准及国家标准[43]"
标准编号 | 标准名称 |
---|---|
IEC 60332.1—2004 | 单根绝缘电线或电缆垂直火焰传播试验 |
IEC 60332.2—2004 | 单根小绝缘电线或电缆垂直火焰传播试验 |
IEC 60332.3—2018 | 成束电线或电缆的垂直火焰蔓延试验 |
GB/T 12666.1—2008 | 单根电线电缆燃烧试验方法 第1部分:垂直燃烧试验 |
GB/T 12666.2—2008 | 单根电线电缆燃烧试验方法 第2部分:水平燃烧试验 |
GB/T 12666.3—2008 | 单根电线电缆燃烧试验方法 第3部分:倾斜燃烧试验 |
GB/T 18380.1—2001 | 电缆在火焰条件下的燃烧试验 第1部分:单根绝缘电线或电缆的垂直燃烧试验方法 |
GB/T 18380.2—2001 | 电缆在火焰条件下的燃烧试验 第2部分:单根铜心绝缘细电线或电缆垂直燃烧试验方法 |
GB/T 18380.3—2001 | 电缆在火焰条件下的燃烧试验 第3部分:成束电线或电缆的燃烧试验方法 |
BS 4066.3—2000 | 成束电线电缆着火条件下测试 |
UL 1666—2017 | 电缆和光缆垂直安装在竖井中时火焰蔓延高度的测试 |
UL 1581—2019 | 电线电缆和软线参考标准 |
NFPA 262—2019 | 电线电缆燃烧和发烟特性的标准测试方法 |
[1] | KONIG D, FRONTZEK F R, DRICOT F, et al. Principles of a new arc tracking test of cables and wires for space-craft[C]// [Proceedings] 1992 Annual Report: Conference on Electrical Insulation and Dielectric Phenomena, October 18-21,1992,Victoria,BC,Canada. IEEE, 1992:363-369. |
[2] |
DRICOT F, REHER H J. Survey of arc tracking on aero-space cables and wires[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5):896-903.
doi: 10.1109/94.326657 |
[3] | 毕妍, 施艺飞, 王力伯. 电弧故障引发电气火灾的原因和预防技术[J]. 消防技术与产品信息, 2007(4):44-46. |
BI Yan, SHI Yifei, WANG Libo. The cause and prevention of electric fire caused by arc fault[J]. Fire Technique and Products Information, 2007(4):44-46. | |
[4] | BABRAUSKAS V. How do electrical wiring faults lead to structure ignitions[C]// Proc. Fire and Materials Conf., 2001:39-51. |
[5] |
SMITH P, FURSE C, GUNTHER J. Analysis of spread spectrum time domain reflectometry for wire fault location[J]. IEEE Sensors Journal, 2005, 5(6):1469-1478.
doi: 10.1109/JSEN.2005.858964 |
[6] |
FURSE C, SMITH P, SAFAVI M, et al. Feasibility of spread spectrum sensors for location of arcs on live wires[J]. IEEE Sensors Journal, 2005, 5(6):1445-1450.
doi: 10.1109/JSEN.2005.858900 |
[7] | 张丹, 陆松, 李森, 等. 民用飞机火灾探测技术浅析[J]. 消防科学与技术, 2014, 33(4):423-426. |
ZHANG Dan, LU Song, LI Sen, et al. Analysis of civil aircraft fire detection technology[J]. Fire Science and Technology, 2014, 33(4):423-426. | |
[8] | 李东琪, 刘敏, 李东立. 飞机货舱火灾探测器设计探讨[J]. 消防科学与技术, 2014, 33(11):1313-1316. |
LI Dongqi, LIU Min, LI Dongli. Discussion on design of aircraft cargo hold fire detector[J]. Fire Science and Technology, 2014, 33(11):1313-1316. | |
[9] | 王凯. 民航飞机火灾预防及扑救对策[J]. 武警学院学报, 2007(8):14-16. |
WANG Kai. Civil aviation aircraft fire prevention and fighting countermeasures[J]. Journal of The Armed Police Academy, 2007(8):14-16. | |
[10] | 胡煌华, 袁征. 现代民用飞机防火系统研究[J]. 民用飞机设计与研究, 2010(2):7-9. |
HU Huanghua, YUAN Zheng. Research on fire protection system of modern civil aircraft[J]. Civil Aircraft Design and Research, 2010(2):7-9. | |
[11] | EHJ帕利特. 飞机电气系统[M]. 韩世杰, 徐荣林. 北京: 国防工业出版社,1985. |
EHJ Pallett. Aircraft electrical system[M]. HANShijie, XURonglin. Beijing: National Defense Industry Press,1985. | |
[12] |
KHALIL M. International research and development trends and problems of HVDC cables with polymeric insulation[J]. IEEE Electr. Insul. Mag., 2002, 13(6):35-47.
doi: 10.1109/57.637152 |
[13] | MOTORI A, SANDROLINI F, MONTANARI G. A contribution to the study of aging of XLPE insulated cables[J]. IEEE Trans. Power Deliv., 1991(6):34-42. |
[14] |
MOFFAT B G, ABRAHAM E, DESMULLIEZ M P Y, et al. Failure mechanisms of legacy aircraft wiring and interconnects[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(3):808-822.
doi: 10.1109/TDEI.2008.4543119 |
[15] | SHULL K, BRINSON L C, NUNALEE N, et al. Aging characterization of polymeric insulation in aircraft wiring via impedance spectroscopy[C]// Proc. 5th Joint NASA/FAA/DoD Conf. Aging Aircraft. 2001:55-61. |
[16] | MADARAS E I, ANASTASI R F. Investigating the use of ultrasound for evaluating aging wiring insulation[J]. Proceedings of SPIE, 2001(4702):1-7. |
[17] |
HONDRED P R, BOWLER N, KESSLER M R. Electrothermal lifetime prediction of polyimide wire insulation with application to aircraft[J]. Journal of Applied Polymer Science, 2013, 130(3):1639-1644.
doi: 10.1002/app.v130.3 |
[18] | 黄淑贞. 浅谈聚四氟乙烯/聚酰亚胺绝缘电线电缆[J]. 电线电缆, 2012(5):5-10. |
HUANG Shuzhen. Discussion on polytetrafluoroethylene/ polyimide insulated wire and cable[J]. Electric Wire & Cable, 2012(5):5-10. | |
[19] | 李小虎, 严波. X-ETFE绝缘航空航天电线的耐电弧评估[J]. 电线电缆, 2019(3):36-38. |
LI Xiaohu, YAN Bo. Evaluation of arc resistance of X-ETFE insulated aerospace wires[J]. Electric Wire & Cable, 2019(3):36-38. | |
[20] | 朱孟康, 曹丹, 徐伟, 等. 航空线缆用XETFE绝缘材料的活化能研究[J]. 合成材料老化与应用, 2020, 49(1):25-28. |
ZHU Mengkang, CAO Dan, XU Wei, et al. Study on activation energy of XETFE insulation material for aviation cable[J]. Aging and Application of Synthetic Materials, 2020, 49(1):25-28. | |
[21] | 李伟, 张冬梅, 翟冲. 航空航天用含氟聚合物电缆耐干/湿电弧试验研究[J]. 光纤与电缆及其应用技术, 2021(1):5-8. |
LI Wei, ZHANG Dongmei, ZHAI Chong. Experimental study on dry/wet arc resistance of fluoropolymer cable for aerospace[J]. Optical Fiber and Cable and Its Application Technology, 2021(1):5-8. | |
[22] | 中国人民解放军总装备部,总装备部军标出版发行部. GJB 773A—2015 航空航天用含氟聚合物绝缘电线电缆通用规范标准[S]. 北京: 总装备部军标出版发行部, 2015. |
General Equipment Department of PLA,Military Standard Publishing Department of General Equipment Department. GJB 773A—2015 General specification standard for fluoropolymer insulated wires and cables used in aerospace[S]. Beijing: Military Standard Publishing and Issuing Department of General Armament Department, 2015. | |
[23] | 江军, 张本栋, 王凯, 等. 面向多电飞机的脉冲波形下局部放电规律[J]. 航空学报, 2020, 41(9):201-210. |
JIANG Jun, ZHANG Bendong, WANG Kai, et al. Partial discharge law under pulse waveforms for multi-electric aircraft[J]. Acta Aeronautica Sinica, 2020, 41(9):201-210. | |
[24] | BILLINGS M J, SMITH A, WILKINS R. Tracking in polymeric insulation[J]. IEEE Transactions on Electrical Insulation, 1967(3):131-137. |
[25] | 徐天勇, 董晓虎, 李荣超, 等. 复合绝缘子内部缺陷的超声相控阵检测研究[J]. 电力工程技术, 2018, 37(6):75-79. |
XU Tianyong, DONG Xiaohu, LI Rongchao, et al. Ultrasonic phased array detection of composite insulator internal defects[J]. Electric Power Engineering Technology, 2018, 37(6):75-79. | |
[26] | YIN Weijun, SCHWEICKART D. Dielectric breakdown of polymeric insulation films under AC/DC and pulsed voltages[C]// 2009 IEEE Electrical Insulation Conference,May 31-June 3,2009,Montreal,QC,Canada. IEEE, 2009:292-296. |
[27] | 周鸿, 李建洪, 周艺璇, 等. 飞机电缆智能绝缘检测系统[J]. 航空计算技术, 2023, 53(1):123-126. |
ZHOU Hong, LI Jianhong, ZHOU Yixuan, et al. Intelligent insulation detection system for machine cable[J]. Aeronautical Computing Technology, 2023, 53(1):123-126. | |
[28] | SINNETT M. 787 no-bleed systems:Saving fuel and enhancing operational efficiencies[J]. Aero Quarterly, 2007(18):6-11. |
[29] | LEUCHTER J, DONG Q H, BORIL J, et al. Electromagnetic immunity of aircraft wireless and cables from electromagnetic interferences[C]// 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). IEEE, 2017:1-6. |
[30] | Eurocontrol. Electrical fires[EB/OL]. [2023-06-11]. https://www.skybrary.aero/articles/electrical-fires. |
[31] | 李丹, 涂刚. 航空电气系统中故障电弧的研究[J]. 中国新通信, 2013, 15(11):29-30. |
LI Dan, TU Gang. Research on fault arc in aeronautical electrical system[J]. China New Telecommunications, 2013, 15(11):29-30. | |
[32] |
TOMASELLA F, FIORITI M, BOGGERO L, et al. Method for estimation of electrical wiring interconnection systems in preliminary aircraft design[J]. Journal of Aircraft, 2019, 56(3):1259-1263.
doi: 10.2514/1.C034943 |
[33] | 王小辉, 朱丽, 车程, 等. 电气线路互联系统安全性设计与分析方法研究[J]. 西北工业大学学报, 2022(3):690-698. |
WANG Xiaohui, ZHU Li, CHE Cheng, et al. Research on safety design and analysis method of electrical line interconnection system[J]. Journal of Northwestern Polytechnical University, 2022(3):690-698. | |
[34] | 魏培坤. 民用飞机电缆的选择方法[J]. 技术与市场, 2015, 22(6):43-44,47. |
WEI Peikun. Selection method of cable for civil aircraft[J]. Technology & Market, 2015, 22(6):43-44,47. | |
[35] | 李绪忠, 李素琴. 舰载飞机电线电缆选用技术分析[J]. 航空工程进展, 2015, 6(4):507-511. |
LI Xuzhong, LI Suqin. Technical analysis of selection of wire and cable for carrier-borne aircraft[J]. Advances in Aeronautical Science and Engineering, 2015, 6(4):507-511. | |
[36] | 陈卓, 李庆南. 民用飞机燃油箱固有安全线路设计的研究[J]. 航空制造技术, 2014(4):66-68,73. |
CHEN Zhuo, LI Qingnan. Research on inherent safety circuit design of civil aircraft fuel tank[J]. Aeronautical Manufacturing Technology, 2014(4):66-68,73. | |
[37] | LIU W, ZHANG X, DONG Y, et al. Arc fault detection for AC SSPC based on Hilbert-Huang transform[C]// IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017:4104-4109. |
[38] | MECKLER P. Simulation of AC arc faults in aircraft electrical networks critical loads-critical ignition energies[J]. SAE Transactions, 2003:584-589. |
[39] |
PARISE G, HESLA E, MARDEGAN C S, et al. Measures to minimize series faults in electrical cords and extension cords[J]. IEEE Transactions on Industry Applications, 2019, 55(5):4551-4556.
doi: 10.1109/TIA.28 |
[40] |
NOTO F, KAWAMURA K. Tracking and ignition phenomena of polyvinyl chloride resin under wet polluted conditions[J]. IEEE Transactions on Electrical Insulation, 1978, EI-13(6):418-425.
doi: 10.1109/TEI.1978.298088 |
[41] |
SHEA J. Identifying causes for certain types of electrically initiated fires in residential circuits[J]. Fire and Materials, 2011, 35(1):19-42.
doi: 10.1002/fam.v35.1 |
[42] | HAGIMOTO Y, WATANABE N, OKAMOTO. Arcing faults on PVC-coverd electrical cords[C]// Proceedings of the 1st Conference of the Association of Korean-Japanese Safety Engineering Society. 1999:221-224. |
[43] | 李陈莹, 陈杰, 谭笑, 等. 电缆燃烧典型火源模拟方法综述[J]. 消防科学与技术, 2021, 40(3):345-351. |
LI Chenying, CHEN Jie, TAN Xiao, et al. Review of typical fire source simulation methods for cable combustion[J]. Fire Science and Technology, 2021, 40(3):345-351. | |
[44] |
LIN C H, FERNG Y M, PEI B S. Development of CFD fire models for deterministic analyses of the cable issues in the nuclear power plant[J]. Nuclear Engineering and Design, 2009, 239(2):338-345.
doi: 10.1016/j.nucengdes.2008.09.010 |
[45] | 高俊国, 孔译辉, 孙伟峰, 等. 电缆燃烧试验新旧标准的火灾动力学仿真对比分析[J]. 中国安全生产科学技术, 2018, 14(8):165-170. |
GAO Junguo, KONG Yihui, SUN Weifeng, et al. Comparative analysis of fire dynamics simulation of new and old standards for cable combustion test[J]. Science and Technology of Safety in Work, 2018, 14(8):165-170. | |
[46] | 付强, 张和平, 杨华, 等. PVC 电缆全尺寸燃烧试验与数值模拟研究[J]. 安全与环境学报, 2010(3):157-161. |
FU Qiang, ZHANG Heping, YANG Hua, et al. Study on full-size combustion test and numerical simulation of PVC cable[J]. Journal of Safety and Environment, 2010(3):157-161. | |
[47] | MOCELLIN P, VIANELLO C, MASCHIO G. Addressing waste disposal fires in open fields through large eddy simulations[J]. Chemical Engineering Transactions, 2021, 86:529-534. |
[48] |
FERNG Y M, LIU C H. Investigating the burning characteristics of electric cables used in the nuclear power plant by way of 3-D transient FDS code[J]. Nuclear Engineering and Design, 2011, 241(1):88-94.
doi: 10.1016/j.nucengdes.2010.08.021 |
[49] |
NOVAK C J, STOLIAROV S I, KELLER M R, et al. An analysis of heat flux induced arc formation in a residential electrical cable[J]. Fire Safety Journal, 2013, 55:61-68.
doi: 10.1016/j.firesaf.2012.10.007 |
[50] |
MUN S Y, HWANG C H. Experimental and numerical studies on major pyrolysis properties of flame retardant PVC cables composed of multiple materials[J]. Materials, 2020, 13(7):1712.
doi: 10.3390/ma13071712 |
[51] | 张政, 贺元骅, 王明武, 等. 低压环境下航空电缆和普通电缆燃烧性能[J]. 消防科学与技术, 2019, 38(7):910-913. |
ZHANG Zheng, HE Yuanhua, WANG Mingwu, et al. Combustion performance of aviation cable and ordinary cable in low pressure environment[J]. Fire Science and Technology, 2019, 38(7):910-913. | |
[52] | 王志, 邹积昀, 曲芳. 航空含氟树脂电缆燃烧及火蔓延特性研究[J]. 化工新型材料, 2022, 50(2):95-100. |
WANG Zhi, ZOU Jiyun, QU Fang. Study on combustion and fire spread characteristics of aviation fluorine resin cable[J]. New Chemical Materials, 2022, 50(2):95-100. | |
[53] |
TAKENAKA K, ISHIKAWA Y, MIZUNO Y, et al. Arc discharge-induced ignition of combustibles placed on a damaged ac power supply cord[J]. Energies, 2020, 13(3):681.
doi: 10.3390/en13030681 |
[54] | 何婧宇, 张文海, 肖先勇. 电缆电弧故障仿真及试验研究[J]. 电气应用, 2018, 37(3):78-83. |
HE Jingyu, ZHANG Wenhai, XIAO Xianyong. Cable arc fault simulation and experimental research[J]. Electrical Application, 2018, 37(3):78-83. | |
[55] |
LI Chenying, CHEN Jie, ZHANG Wei, et al. Influence of arc size on the ignition and flame propagation of cable fire[J]. Energies, 2021, 14(18):5675.
doi: 10.3390/en14185675 |
[56] | 杨春磊. 民用飞机燃油箱布线研究[J]. 航空科学技术, 2014, 25(11):23-26. |
YANG Chunlei. Research on civil aircraft fuel tank wiring[J]. Aeronautical Science and Technology, 2014, 25(11):23-26. | |
[57] | 刘静, 赵望达. 基于ZigBee技术的火灾报警系统设计[J]. 单片机与嵌入式系统应用, 2007(1):56-58. |
LIU Jing, ZHAO Wangda. Design of fire alarm system based on ZigBee technology[J]. Microcontrollers & Embedded Systems, 2007(1):56-58. | |
[58] | 罗英, 张德银, 罗文田, 等. 飞机货舱火警探测缺陷与改进模拟实验[J]. 探测与控制学报, 2009(S1):74-79. |
LUO Ying, ZHANG Deyin, LUO Wentian, et al. Simulation experiment on defect and improvement of fire detection in aircraft cargo hold[J]. Journal of Detection & Control, 2009(S1):74-79. | |
[59] | 王越, 韩菁. 信息融合技术在火灾探测中的应用[J]. 重庆理工大学学报, 2011, 25(1):44-48. |
WANG Yue, HAN Jing. Application of data fusion technology to fire detection[J]. Journal of Chongqing University of Technology, 2011, 25(1):44-48. | |
[60] |
YICK J, MUKHERJEE B, GHOSAL D. Wireless sensor network survey[J]. Computer Networks, 2008, 52(12):2292-2330.
doi: 10.1016/j.comnet.2008.04.002 |
[61] | WANG R, LI Y, SUN H, et al. Multisensor-weighted fusion algorithm based on improved AHP for aircraft fire detection[J]. Complexity,2021(2021):1-10. |
[62] |
CHEN S J, HOVDE D C, PETERSON K A, et al. Fire detection using smoke and gas sensors[J]. Fire Safety Journal, 2007, 42(8):507-515.
doi: 10.1016/j.firesaf.2007.01.006 |
[63] | 何志祥, 孟超. 基于模糊神经网络的火灾算法研究[J]. 消防科学与技术, 2018, 37(10):1432-1436. |
HE Zhixiang, MENG Chao. Research on fire algorithm based on fuzzy neural network[J]. Fire Science and Technology, 2018, 37(10):1432-1436. | |
[64] | 张红梅, 叶慧, 郑罡, 等. 多传感器飞机货舱火警探测系统研究[J]. 重庆理工大学学报, 2017, 31(7):176-181. |
ZHANG Hongmei, YE Hui, ZHENG Gang, et al. Research on multi-sensor aircraft cargo hold fire detection system[J]. Journal of Chongqing University of Technology, 2017, 31(7):176-181. | |
[65] | 邓力, 刘全义, 胡林, 等. 基于BP神经网络的受限空间火灾联合探测方法[J]. 中国安全生产科学技术, 2020, 16(1):158-162. |
DENG Li, LIU Quanyi, HU Lin, et al. Joint fire detection method in confined space based on BP neural network[J]. Journal of Safety Science and Technology, 2020, 16(1):158-162. | |
[66] | 钟玲玲. 基于多传感器融合的飞机货舱火警探测[J]. 江苏科技信息, 2018, 35(28):41-43. |
ZHONG Lingling. Aircraft cargo hold fire detection based on multi-sensor fusion[J]. Jiangsu Science & Technology Information, 2018, 35(28):41-43. | |
[67] | 何永勃, 李明伟. 基于循环神经网络的飞机货舱火灾快速识别算法[J]. 消防科学与技术, 2020(11):1490-1494. |
HE Yongbo, LI Mingwei. Fast identification algorithm of aircraft cargo hold fire based on recurrent neural network[J]. Fire Science and Technology, 2020(11):1490-1494. | |
[68] | 张德银, 何志祥, 钱伟, 等. 民用飞机火灾探测器改进研究[J]. 消防科学与技术, 2016, 35(11):1575-1578. |
ZHANG Deyin, HE Zhixiang, QIAN Wei, et al. Research on fire detector improvement for civil aircraft[J]. Fire Science and Technology, 2016, 35(11):1575-1578. | |
[69] | Kidde. Smarter features for a safer home[EB/OL]. [2023-06-11]. https://www.kidde.com/home-safety/en/us/. |
[70] | Siemens. Siemens investing $220M in new rail manufacturing facility[EB/OL]. [2023-07-25]. https://www.siemens. com/us/en.html. |
[71] | HU S, WANG L, MAO J, et al. Synchronous online diagnosis of multiple cable intermittent faults based on chaotic spread spectrum sequence[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4):3217-3226. |
[72] | WANG Z, MCCONNELL S, BALOG R S, et al. Arc fault signal detection-Fourier transformation vs.wavelet de-composition techniques using synthesized data[C]// IEEE 40th Photo-voltaic Specialist Conference, 2014:3239-3244. |
[73] |
KIM C H, KIM H, KO Y H, et al. A novel fault-detection technique of high-impedance arcing faults in transmission lines using the wavelet transform[J]. IEEE Transactions on Power Delivery, 2002, 17(4):921-929.
doi: 10.1109/TPWRD.2002.803780 |
[74] |
ZHANG Jianguo, XU Hang, WANG Bingjie, et al. Wiring fault detection with Boolean-chaos time-domain reflectometry[J]. Nonlinear Dynamics, 2015, 80(1-2):553-559.
doi: 10.1007/s11071-014-1888-x |
[75] | 高闯, 王莉, 杨善水. 电缆故障在线检测定位装置研究[J]. 航空工程进展, 2018, 9(3):447-450. |
GAO Chuang, WANG Li, YANG Shanshui. Research on cable fault on-line detection and location device[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3):447-450. | |
[76] | 崔芮华, 佟德栓. 基于 Levene 检验的航空交流串联电弧故障检测[J]. 电工技术学报, 2021, 36(14):3034-3042. |
CUI Ruihua, TONG Deshuan. Aircraft AC series arc fault detection based on Levene test[J]. Transactions of China Electrotechnical Society, 2021, 36(14):3034-3042. | |
[77] | 吉瑞萍, 李伟林, 张晓斌, 等. 航空固态功率控制器电弧故障检测方法研究[J]. 电气工程学报, 2015, 10(11):19-26. |
JI Ruiping, LI Weilin, ZHANG Xiaobin, et al. Research on arc fault detection method of aviation solid state power controller[J]. Journal of Electrical Engineering, 2015, 10(11):19-26. | |
[78] | 胡博. 民用飞机货舱灭火系统设计方法研究[J]. 硅谷, 2014(13):35-36. |
HU Bo. Research on the design method of civil aircraft cargo compartment fire suppression system[J]. Silicon Valley, 2014(13):35-36. | |
[79] | 朱日兴, 朱兆优. 民用飞机防火系统适航审定技术分析与研究[J]. 民用飞机设计与研究, 2021(1):123-127. |
ZHU Rixing, ZHU Zhaoyou. Analysis and research on airworthiness certification technology of civil aircraft fire prevention system[J]. Civil Aircraft Design and Research, 2021(1):123-127. | |
[80] | 宣扬, 银未宏. 民用飞机哈龙替代灭火技术应用及发展趋势[J]. 科技信息, 2011(22):709-710. |
XUAN Yang, YIN Weihong. Application and development trend of civil aircraft Halon alternative fire extinguishing technology[J]. Science & Technology Information, 2011(22):709-710. | |
[81] |
FU B, LIN W. Supercritical heat transfer of NOVEC 649 refrigerant in horizontal minichannels[J]. International Communications in Heat and Mass Transfer, 2020, 117:104740.
doi: 10.1016/j.icheatmasstransfer.2020.104740 |
[82] |
SAVIANO G, FERRINI M, BENUSSI L, et al. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics[J]. Journal of Instrumentation, 2018, 13(3):P03012.
doi: 10.1088/1748-0221/13/03/P03012 |
[83] |
YUAN S, CHANG C, ZHOU Y, et al. The extinguishment mechanisms of a micelle encapsulator F-500 on lithium-ion battery fires[J]. Journal of Energy Storage, 2022, 55:105186.
doi: 10.1016/j.est.2022.105186 |
[84] | GUAN Y, LU S, JIEQIAN H, et al. Study on the response/recovery properties of the gas sensing technique based on the detection of pressure difference[C]// CSAA/IET International Conference on Air-craft Utility Systems (AUS 2018). IET, 2018:740-744. |
[85] | YUAN W, ZHANG H P, LU S. Halon substitute fire-extinguishing agent HFC-125 concentration measurement based on infrared absorption and the research on the effect of relative humidity[C]// 2016 IEEE International Conference on Aircraft Utility Systems (AUS). IEEE, 2016:517-521. |
[86] | 郭大可. 民用飞机防火系统研究及其电气设计浅析[J]. 科技创新导报, 2014, 11(25):91. |
GUO Dake. Civil aircraft fire protection system research and electrical design analysis[J]. Science and Technology Innovation Guide, 2014, 11(25):91. | |
[87] | 宁晓蕾, 王宇, 王靖. 某型飞机APU舱灭火系统设计[J]. 火灾科学, 2016, 25(4):234-238. |
NING Xiaolei, WANG Yu, WANG Jing. Design of fire extinguishing system in APU cabin of a certain aircraft[J]. Fire Safety Science, 2016, 25(4):234-238. | |
[88] | 王志超. 民用飞机防火系统研究[J]. 民用飞机设计与研究, 2011(3):11-13,27. |
WANG Zhichao. Research on civil aircraft fire protection system[J]. Civil Aircraft Design and Research, 2011(3):11-13,27. | |
[89] | 张一伟. 电气火灾预防的有效对策思考[J]. 今日消防, 2021, 6(9):91-93. |
ZHANG Yiwei. Thinking on effective countermeasures of electric fire prevention[J]. Fire Protection Today, 2021, 6(9):91-93. | |
[90] | 卢世敏. 建筑电气火灾事故原因及预防策略[J]. 今日消防, 2021, 6(6):119-120. |
LU Shimin. Causes and prevention strategies of building electrical fire accidents[J]. Fire Protection Today, 2021, 6(6):119-120. | |
[91] |
SMITH T D, HERRON R, LE A, et al. Assessment of confined space entry and rescue training for aircraft rescue and fire fighting(ARFF) members in the United States[J]. Journal of Safety Research, 2018, 67:77-82.
doi: 10.1016/j.jsr.2018.09.014 |
[1] | 翁军华,张剑锐,李达,郑海兴. 光伏系统直流电弧故障检测的抗干扰技术综述[J]. 电气工程学报, 2019, 14(3): 9-15. |
[2] | 吉瑞萍, 李伟林, 张晓斌, 董延军. 航空固态功率控制器电弧故障检测方法研究[J]. 电气工程学报, 2015, 10(11): 19-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||