电气工程学报 ›› 2022, Vol. 17 ›› Issue (2): 208-214.doi: 10.11985/2022.02.024

• 电力系统 • 上一篇    下一篇

扫码分享

基于智能感知与深度学习的智能变电站设备状态检测方法*

李远松1,2(), 丁津津1(), 徐晨2(), 高博1(), 汤汉松3(), 单荣荣4()   

  1. 1.国网安徽省电力有限公司电力科学研究院 合肥 230601
    2.安徽新力电业科技咨询有限责任公司 合肥 230022
    3.江苏凌创电气自动化股份有限公司 镇江 212009
    4.国电南瑞科技股份有限公司 南京 211106
  • 收稿日期:2021-08-20 修回日期:2022-02-21 出版日期:2022-06-25 发布日期:2022-08-08
  • 作者简介:李远松,男,1987年生,硕士,工程师。主要研究方向为电力系统继电保护自动化等。E-mail: liyuansong@ah.sgcc.com
    丁津津,男,1985年生,博士,高级工程师。主要研究方向为电力系统继电保护自动化等。E-mail: dingjingjing@ah.sgcc.com
    徐晨,男,1990年生,工程师。主要研究方向为大型发电机组及变电站调试技术等。E-mail: xuc887499@126.com
    高博,男,1981年生,硕士,高级工程师。主要研究方向为电力系统继电保护自动化等。E-mail: gaoboahdky@163.com
    汤汉松,男,1974年生,工程师。主要研究方向为智能电网、电子式互感器。E-mail: 7737487492@qq.com
    单荣荣,男,1986年生,硕士,工程师。主要研究方向为电力系统自 动化。E-mail: shanrongrong@sgepri.sgcc.com
  • 基金资助:
    *国家重点研发计划资助项目(2018YFB0905000)

State Detection Method of Smart Substation Equipment Based on Intelligent Perception and Deep Learning

LI Yuansong1,2(), DING Jinjin1(), XU Chen2(), GAO Bo1(), TANG Hansong3(), SHAN Rongrong4()   

  1. 1. State Grid Anhui Electric Power Research Institute, Hefei 230601
    2. Anhui Xinli Electric Technology Consulting Co., Ltd., Hefei 230022
    3. Jiangsu LingChuang Electric Automation Co., Ltd., Zhenjiang 212009
    4. NARI Technology Development Co., Ltd., Nanjing 211106
  • Received:2021-08-20 Revised:2022-02-21 Online:2022-06-25 Published:2022-08-08

摘要:

针对现有变电站设备状态检测方式单一、检测效果欠佳的问题,提出一种基于智能感知与深度学习的智能变电站设备状态检测方法。首先,在变电站四个角落安装低功率的热像仪,以实时监测设备状态。然后,应用中值滤波和侵蚀技术处理设备热图像,获得灰度图像后,利用加速鲁棒特征法提取图像特征,初步监测设备状态。最后,基于深度学习模型对图像特征作训练分类,以检测存在故障的设备。基于Tensorflow平台对其性能进行试验论证,结果表明,相比于其他方法,所提方法的检测准确率和召回率更高且检测速率更快,能够直观准确地掌握变电站的设备状态。

关键词: 智能变电站, 深度学习, 智能感知, 中值滤波, 加速鲁棒特征法

Abstract:

Aiming at the problems of single state detection mode and poor detection effect of existing substation equipment, a state detection method of Smart substation equipment based on intelligent perception and deep learning is proposed. Firstly, low-power thermal imagers are installed in four corners of the substation to monitor the status of the equipment in real time. Then, the thermal image of the equipment is processed by median filter and erosion technology. After getting the gray image, the image features are extracted by accelerated robust feature method, and the status of the equipment is preliminarily monitored. Finally, the image features are further analyzed based on the deep learning model to detect the faulty equipment. The proposed method is based on Tensorflow platform to demonstrate its performance. The results show that compared with other methods, the proposed method has higher detection accuracy and recall rate, and faster detection rate, which can intuitively and accurately grasp the equipment status of the substation.

Key words: Smart substation, deep learning, intelligent perception, median filtering, accelerated robust feature method

中图分类号: