电气工程学报 ›› 2023, Vol. 18 ›› Issue (4): 3-19.doi: 10.11985/2023.04.002
收稿日期:
2023-03-12
修回日期:
2023-06-28
出版日期:
2023-12-25
发布日期:
2024-01-12
作者简介:
陈前,男,1986年生,博士,教授,博士研究生导师。主要研究方向为永磁电机设计、容错分析和智能控制。E-mail:chenqian0501@ujs.edu.cn基金资助:
CHEN Qian(), ZHAO Meiling, LIAO Jihong, LIU Guohai, ZHAO Wenxiang(
)
Received:
2023-03-12
Revised:
2023-06-28
Online:
2023-12-25
Published:
2024-01-12
摘要:
电机系统的轻量化和高效率,有利于提高重大装备的运载能力和续航能力,已成为其核心需求。首先从高磁负荷、高电负荷与高线速度方面阐述了轻量化永磁电机的关键设计技术。然后,从电机内的不同损耗抑制方面,阐述高效率永磁电机的设计方法。其次,从高精度热分析和高效率冷却两个方面,保障轻量化高效率永磁电机的可靠运行。为了实现电机系统的高效率运行目标,分析了最大转矩电流比和最高效率电流比驱动控制策略。最后,基于高效率轻量化永磁电机及其控制技术的发展现状,对其未来的发展趋势进行了展望。
中图分类号:
陈前, 赵美玲, 廖继红, 刘国海, 赵文祥. 轻量化高效率永磁电机及其控制技术综述*[J]. 电气工程学报, 2023, 18(4): 3-19.
CHEN Qian, ZHAO Meiling, LIAO Jihong, LIU Guohai, ZHAO Wenxiang. Review on Lightweight and High Efficiency Permanent Magnet Motor and Its Control Techniques[J]. Journal of Electrical Engineering, 2023, 18(4): 3-19.
[1] | 谷鑫, 鲁金月, 王志强, 等. 基于无差拍电流预测控制的永磁同步电机谐波电流抑制策略[J]. 电工技术学报, 2022, 37(24):6345-6356. |
GU Xin, LU Jinyue, WANG Zhiqiang, et al. Harmonic current suppression strategy for permanent magnet synchronous motor based on deadbeat current predictive control[J]. Transactions of China Electrotechnical Society, 2022, 37(24):6345-6356. | |
[2] | 许家群, 王天琪, 贾普凡. 永磁同步电机准谐振自抗扰电流谐波抑制[J]. 中国电机工程学报, 2023, 43(6):2450-2460. |
XU Jiaqun, WANG Tianqi, JIA Pufan. Harmonic suppression of quasi resonant self disturbance rejection current in permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2023, 43(6):2450-2460. | |
[3] | 魏艺涵, 罗响, 朱莉, 等. 基于比例谐振控制器的高凸极率永磁同步电机电流谐波抑制策略研究[J]. 中国电机工程学报, 2021, 41(7):2526-2538. |
WEI Yihan, LUO Xiang, ZHU Li, et al. Research on current harmonic suppression strategy of high saliency permanent magnet synchronous motor based on proportional resonance controller[J]. Proceedings of the CSEE, 2021, 41(7):2526-2538. | |
[4] | 宋鑫鑫, 赵文祥, 成瑀. 开绕组磁场调制永磁直线电机的单位功率因数弱磁控制[J]. 电工技术学报, 2021, 36(5):893-901. |
SONG Xinxin, ZHAO Wenxiang, CHENG Yu. Unit power factor weakening control of open winding magnetic field modulation permanent magnet linear motor[J]. Transactions of China Electrotechnical Society, 2021, 36(5):893-901. | |
[5] |
MORIMOTO S, OOI S, INOUE Y, et al. Experimental evaluation of a rare-earth-free PMASYNRM with ferrite magnets for automotive applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10):5749-5756.
doi: 10.1109/TIE.41 |
[6] |
ISLAM M S, MIKAIL R, HUSAIN I. Field weakening operation of slotless permanent magnet machines using stator embedded inductor[J]. IEEE Transactions on Industry Applications, 2021, 57(3):2387-2397.
doi: 10.1109/TIA.2021.3061043 |
[7] | ONSAL M, CUMHUR B, DEMIR Y, et al. Rotor design optimization of a new flux-assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications[J]. IEEE Transactions on Magnetics, 2018, 54(11):8206005. |
[8] |
ZENG Yu, CHENG Ming, LIU Guohai, et al. Effects of magnet shape on torque capability of surface-mounted permanent magnet machine for servo applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4):2977-2990.
doi: 10.1109/TIE.41 |
[9] |
WANG Kai, ZHU Ziqiang, REN Yuan, et al. Torque improvement of dual three-phase permanent-magnet machine with third-harmonic current injection[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11):6833-6844.
doi: 10.1109/TIE.2015.2442519 |
[10] |
HUA Hao, HUA Wei, ZHAO Guishu, et al. Torque production mechanism of switched reluctance machines with air-gap field modulation principle[J]. IEEE Transactions on Energy Conversion, 2020, 35(3):1617-1627.
doi: 10.1109/TEC.60 |
[11] | ZHAO Xing, NIU Shuangxia, FU Weinong. Torque component quantification and design guideline for dual permanent magnet Vernier machine[J]. IEEE Transactions on Magnetics, 2019, 55(6):8101905. |
[12] | 金龙, 黄鉴良, 黎金强, 等. 贯流风机风道系统的抗风阻性能试验与分析[J]. 机电工程技术, 2022, 51(6):203-205,251. |
JIN Long, HUANG Jianliang, LI Jinqiang, et al. Test and analysis of wind resistance performance of cross flow fan duct system[J]. Mechanical and Electrical Engineering Technology, 2022, 51(6):203-205,251. | |
[13] | 刘成, 胡建辉, 尚静. 基于改进自抗扰控制的共直流母线开绕组永磁同步电机转矩脉动抑制策略[J]. 中国电机工程学报, 2023, 43(2):779-789. |
LIU Cheng, HU Jianhui, SHANG Jing. Torque ripple suppression strategy for open winding permanent magnet synchronous motor with common DC bus based on improved self disturbance rejection control[J]. Proceedings of the CSEE, 2023, 43(2):779-789. | |
[14] | 陶大军, 潘博, 戈宝军, 等. 电动汽车驱动电机冷却技术研究发展综述[J]. 电机与控制学报, 2023, 27(4):75-85. |
TAO Dajun, PAN Bo, GE Baojun, et al. Overview of research and development of cooling technology for electric vehicle drive motors[J]. Electric Machines and Control, 2023, 27(4):75-85. | |
[15] | 王宇, 邢凯玲, 张成糕. 基于旋转综合矢量脉振高频电压注入的永磁磁通切换电机无位置传感器技术[J]. 中国电机工程学报, 2022, 42(19):7224-7236. |
WANG Yu, XING Kailing, ZHANG Chenggao. Sensorless technology for permanent magnet flux switched motor based on high frequency voltage injection of rotational synthesis vector pulse[J]. Proceedings of the CSEE, 2022, 42(19):7224-7236. | |
[16] | FANG Shuanghua, LIU Huan, WANG Haitao, et al. High power density PMSM with lightweight structure and high-performance soft magnetic alloy core[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2):1-5. |
[17] | 张卓然, 耿伟伟, 陆嘉伟. 定子无铁心永磁电机技术研究现状与发展[J]. 中国电机工程学报, 2018, 38(2):582-600. |
ZHANG Zhuoran, GENG Weiwei, LU Jiawei. Research status and development of stator coreless permanent magnet motor technology[J]. Proceedings of the CSEE, 2018, 38(2):582-600. | |
[18] | 武岳, 张志锋, 平佳齐. 高功率密度轴向磁通永磁电机交流铜耗分析[J]. 电机与控制学报, 2022, 26(5):65-75. |
WU Yue, ZHANG Zhifeng, PING Jiaqi. AC copper loss analysis of high power density axial flux permanent magnet motor[J]. Electric Machines and Control, 2022, 26(5):65-75. | |
[19] | 李勇, 吴佳鑫, 马鹏程, 等. 飞行器用永磁电机系统的功率密度与需求展望[J]. 电机与控制学报, 2022, 26(2):1-9. |
LI Yong, WU Jiaxin, MA Pengcheng, et al. Power density and demand outlook of permanent magnet motor system for aircraft[J]. Electric Machines and Control, 2022, 26(2):1-9. | |
[20] |
DU Z S, LIPO T A. High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets[J]. IEEE Transactions on Industry Applications, 2019, 55(3):2601-2610.
doi: 10.1109/TIA.28 |
[21] | 赵品志, 杨贵杰, 李勇. 三次谐波注入式五相永磁同步电机转矩密度优化[J]. 中国电机工程学报, 2010, 30(33):71-77. |
ZHAO Pinzhi, YANG Guijie, LI Yong. Torque density optimization of three harmonic injection five-phase permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2010, 30(33):71-77. | |
[22] | 王宇, 张成糕, 郝雯娟. 永磁电机及其驱动系统容错技术综述[J]. 中国电机工程学报, 2022, 42(1):351-372. |
WANG Yu, ZHANG Chenggao, HAO Wenjuan. Overview of fault-tolerant technologies of permanent magnet brushless machine and its control system[J]. Proceedings of the CSEE, 2022, 42(1):351-372. | |
[23] |
CHENG Ming, HAN Peng, HUA Wei. General airgap field modulation theory for electrical machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6063-6074.
doi: 10.1109/TIE.2017.2682792 |
[24] |
ZHAO Yu, LI Dawei, REN Xiang, et al. Investigation of permanent magnet Vernier machines from armature field perspective[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3):2934-2945.
doi: 10.1109/JESTPE.2021.3058261 |
[25] |
ZHAO Jing, FU Wenqi, ZHENG Yun, et al. Comparative study of modular-stator and conventional outer-rotor flux-switching permanent-magnet motors[J]. IEEE Access, 2019, 7:38297-38305.
doi: 10.1109/ACCESS.2018.2890163 |
[26] |
ZHU Xuhui, ZHAO Wenxiang, XU Liang. Distribution design of modulator for split-pole flux-modulation permanent-magnet machine[J]. IEEE Transactions on Energy Conversion, 2021, 36(3):1614-1624.
doi: 10.1109/TEC.2020.3041557 |
[27] |
CHEN Canruo, REN Xiang, LI Dawei, et al. Torque performance enhancement of flux-switching permanent magnet machines with dual sets of magnet arrangements[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4):2623-2634.
doi: 10.1109/TTE.2021.3063426 |
[28] |
KUMAR A, KAUSHIK B K. Exponential matrix-rational approximation (EM-RA) model for SWCNT bundle and hybrid Cu-CNT interconnects[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(4):1212-1222.
doi: 10.1109/TEMC.2020.3037204 |
[29] |
WANG Yubin, FENG Qi, LI Xianglin, et al. and experimental test of a segmented-rotor high-temperature superconducting flux-switching generator with stationary seal[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):9047-9055.
doi: 10.1109/TIE.41 |
[30] |
LIU Chuan, XU Zeyuan, GERADA D, et al. Experimental investigation on oil spray cooling with hairpin windings[J]. IEEE Transactions on Industrial Electronics, 2019, 67(9):7343-7353.
doi: 10.1109/TIE.41 |
[31] |
PIÑA ORTEGA A J, XU L. Investigation of effects of asymmetries on the performance of permanent magnet synchronous machines[J]. IEEE Transactions on Energy Conversion, 2017, 32(3):1002-1011.
doi: 10.1109/TEC.2017.2684165 |
[32] |
SEN B, WANG Jiabin, LAZARI P A. High-fidelity computationally efficient transient model of interior permanent-magnet machine with stator turn fault[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2):773-783.
doi: 10.1109/TIE.2015.2491884 |
[33] |
OBATA M, MORIMOTO S, SANADA M, et al. Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity[J]. IEEE Transactions on Industry Applications, 2013, 50(4):2427-2435.
doi: 10.1109/TIA.2013.2294999 |
[34] |
PARK J K, BABETTO C, BERARDI G, et al. Comparison of fault characteristics according to winding configurations for dual three-phase synchronous reluctance motor[J]. IEEE Transactions on Industry Applications, 2021, 57(3):2398-2406.
doi: 10.1109/TIA.2021.3061039 |
[35] | ZHAO Wenliang, ZHAO Fei, LIPO T A, et al. Optimal design of a novel V-type interior permanent magnet motor with assisted barriers for the improvement of torque characteristics[J]. IEEE Transactions on Magnetics, 2014, 50(11):8104504. |
[36] |
XU Gaohong, LIU Guohai, ZHAO Wenxiang, et al. Principle of torque-angle approaching in a hybrid rotor permanent-magnet motor[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4):2580-2591.
doi: 10.1109/TIE.2018.2844797 |
[37] |
GERADA D, MEBARKI A, BROWN N L, et al. High-speed electrical machines:Technologies,trends,and developments[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6):2946-2959.
doi: 10.1109/TIE.2013.2286777 |
[38] |
KIM S, KIM Y, LEE G, et al. A novel rotor configuration and experimental verification of interior PM synchronous motor for high-speed applications[J]. IEEE Transactions on Magnetics, 2012, 48(2):843-846.
doi: 10.1109/TMAG.2011.2174045 |
[39] |
BAILEY C, SABAN D M, GUEDES-PINTO P. Design of high-speed direct-connected permanent-magnet motors and generators for the petrochemical industry[J]. IEEE Transactions on Industry Applications, 2009, 45(3):1159-1165.
doi: 10.1109/TIA.2009.2018964 |
[40] | 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7):1-18. |
ZHANG Fengge, DU Guanghui, WANG Tianyu, et al. Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7):1-18. | |
[41] | DONG Jianning, HUANG Yunkai, JIN Long, et al. Comparative study of surface-mounted and interior permanent-magnet motors for high-speed applications[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4):5200304. |
[42] | HUYNH C, ZHENG L P, ACHARYA D. Losses in high speed permanent magnet machines used in microturbine applications[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(2):1-6. |
[43] |
LI Weili, QIU Hongbo, ZHANG Xiaochen, et al. Influence of rotor-sleeve electromagnetic characteristics on high-speed permanent-magnet generator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6):3030-3037.
doi: 10.1109/TIE.2013.2253074 |
[44] | TONG Wenming, SUN Ruolan, ZHANG Chao, et al. Loss and thermal analysis of a high-speed surface-mounted PMSM with amorphous metal stator core and titanium alloy rotor sleeve[J]. IEEE Transactions on Magnetics, 2019, 55(6):8102104. |
[45] |
LIM M, KIM J, HWANG Y, et al. Design of an ultra-high-speed permanent-magnet motor for an electric turbocharger considering speed response characteristics[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):774-784.
doi: 10.1109/TMECH.2016.2634160 |
[46] |
KAHOURZADE S, MAHMOUDI A, PING H, et al. A comprehensive review of axial-flux permanent-magnet machines[J]. Canadian Journal of Electrical and Computer Engineering, 2014, 37(1):19-33.
doi: 10.1109/CJECE.2014.2309322 |
[47] |
TAKENO M, CHIBA A, HOSHI N, et al. Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles[J]. IEEE Transactions on Industry Applications, 2012, 48(4):1327-1334.
doi: 10.1109/TIA.2012.2199952 |
[48] | GENG Weiwei, ZHANG Zhuoran, LI Qiang. High torque density fractional-slot concentrated-winding axial-flux permanent-magnet machine with modular SMC stator[J]. IEEE Transactions on Industry Applications, 2020, 56(4):3691-3699. |
[49] | 王道涵, 彭晨, 王秀和. 电动汽车高性能永磁电机转矩脉动与电磁振动抑制方法研究[J]. 电气工程学报, 2021, 16(4):42-50. |
WANG Daohan, PENG Chen, WANG Xiuhe. Research on different design approaches to mitigate torque ripple and electromagnetic vibration for high-performance electric vehicle traction machine[J]. Journal of Electrical Engineering, 2021, 16(4):42-50. | |
[50] | 韩林达, 王秀平, 张凤阁. 设计参数对磁障耦合式初级永磁直线电动机性能的影响[J]. 电气工程学报, 2020, 15(2):70-77. |
HAN Linda, WANG Xiuping, ZHANG Fengge. Influence of design parameters on performance of magnetic barrier coupling primary permanent magnet linear motor[J]. Journal of Electrical Engineering, 2020, 15(2):70-77. | |
[51] | 罗晓祎, 张凤阁. 一种分数槽永磁同步电机的转矩计算方法[J]. 电气工程学报, 2021, 16(3):1-8. |
LUO Xiaoyi, ZHANG Fengge. Torque calculation method of fractional slot permanent magnet synchronous motor[J]. Journal of Electrical Engineering, 2021, 16(3):1-8. | |
[52] |
ZHAO Wenxiang, ZHENG Junqiang, JI Jinghua, et al. Star and delta hybrid connection of a FSCW PM machine for low space harmonics[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12):9266-9279.
doi: 10.1109/TIE.41 |
[53] | DAJAKU G, XIE Wei, GERLING D. Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design[J]. IEEE Transactions on Magnetics, 2014, 50(5):8201012. |
[54] | LIU Xiahe, ZHU Ziqiang. Efficiency improvement of switched flux PM memory machine over interior PM machine for EV/HEV applications[J]. IEEE Transactions on Magnetics, 2014, 50(11):8202104. |
[55] |
ZHENG Junqiang, ZHAO Wenxiang, JI Jinghua, et al. Design to reduce rotor losses in fault-tolerant permanent-magnet machines[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8476-8487.
doi: 10.1109/TIE.41 |
[56] | WALKER A, GALEA M, GERADA D, et al. Development and design of a high performance traction machine for the FreedomCar 2020 traction machine targets[C]// 2016 XXII International Conference on Electrical Machines (ICEM),Lausanne,Switzerland, 2016:1611-1617. |
[57] | 李存贺, 赵博, 刘剑, 等. 开关磁阻电动机小样本磁链特性精确建模方法[J]. 电气工程学报, 2021, 16(1):16-25. |
LI Cunhe, ZHAO Bo, LIU Jian, et al. Accurate modeling method for switched reluctance motors with small sample flux-linkage characteristics[J]. Journal of Electrical Engineering, 2021, 16(1):16-25. | |
[58] | 林明耀, 杨公德, 李念. 混合永磁记忆电机系统及其关键技术综述[J]. 中国电机工程学报, 2018, 38(4):1187-1202,1296. |
LIN Mingyao, YANG Gongde, LI Nian. Overview of hybrid permanent magnet memory machine systems and their key technologies[J]. Proceedings of the CSEE, 2018, 38(4):1187-1202,1296. | |
[59] |
YANG Hui, ZHU Z Q, LIN Heyun, et al. Comparative study of hybrid PM memory machines having single- and dual-stator configurations[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):9168-9178.
doi: 10.1109/TIE.41 |
[60] |
ZHENG Junqiang, ZHAO Wenxiang, JI Jinghua, et al. Quantitative analysis on maximum efficiency point and specific high-efficiency region of permanent-magnet machines[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2):1333-1345.
doi: 10.1109/TIE.2021.3059552 |
[61] | CHEN Qian, FAN Xun, LIU Guohai, et al. Regulation of high efficiency region in permanent magnet machines according to a given driving cycle[J]. IEEE Transactions on Magnetics, 2017, 53(11):7300805. |
[62] | QI Ji, HUA Wei, ZHANG Hengliang. Thermal analysis of modular-spoke-type permanent-magnet machines based on thermal network and FEA method[J]. IEEE Transactions on Magnetics, 2019, 55(7):8104105. |
[63] |
SIMPSON N, WROBEL R, MELLOR P H. An accurate mesh-based equivalent circuit approach to thermal modeling[J]. IEEE Transactions on Magnetics, 2014, 50(2):269-272.
doi: 10.1109/TMAG.2013.2282047 |
[64] |
ZHAO Wenxiang, CAO Donghui, JI Jinghua, et al. A generalized mesh-based thermal network model for SPM machines combining coupled winding solution[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1):116-127.
doi: 10.1109/TIE.41 |
[65] |
SCIASCERA C, GIANGRANDE P, PAPINI L, et al. Analytical thermal model for fast stator winding temperature prediction[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6116-6126.
doi: 10.1109/TIE.2017.2682010 |
[66] |
TESSAROLO A, BRUZZESE C. Computationally efficient thermal analysis of a low-speed high-thrust linear electric actuator with a three-dimensional thermal network approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1410-1420.
doi: 10.1109/TIE.2014.2341555 |
[67] |
RAMARATHNAM S, MOHAMMED A, BILGIN B, et al. A review of structural and thermal analysis of traction motors[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3):255-265.
doi: 10.1109/TTE.2015.2476478 |
[68] |
ZHU Sa, CHENG Ming, CAI Xiuhua. Direct coupling method for coupled field-circuit thermal model of electrical machines[J]. IEEE Transactions on Energy Conversion, 2018, 33(2):473-482.
doi: 10.1109/TEC.2017.2761787 |
[69] |
ZHANG Yujiao, RUAN Jiangjun, HUANG Tao, et al. Calculation of temperature rise in air-cooled induction motors through 3-D coupled electromagnetic fluid-dynamical and thermal finite-element analysis[J]. IEEE Transactions on Magnetics, 2012, 48(2):1047-1050.
doi: 10.1109/TMAG.2011.2174433 |
[70] |
HABIBINIA D, ROSTAMI N, FEYZI M R, et al. New finite element based method for thermal analysis of axial flux interior rotor permanent magnet synchronous machine[J]. IET Electric Power Applications, 2020, 14(3):464-470.
doi: 10.1049/elp2.v14.3 |
[71] |
YU Wenfei, HUA Wei, QI Ji, et al. Coupled magnetic field-thermal network analysis of modular-spoke-type permanent-magnet machine for electric motorcycle[J]. IEEE Transactions on Energy Conversion, 2021, 36(1):120-130.
doi: 10.1109/TEC.60 |
[72] |
FANG Guoyun, YUAN Wei, YAN Zhiguo, et al. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor[J]. Applied Thermal Engineering, 2019, 152:594-604.
doi: 10.1016/j.applthermaleng.2019.02.120 |
[73] |
FAN Jinxin, ZHANG Chengning, WANG Zhifu, et al. Thermal analysis of permanent magnet motor for the electric vehicle application considering driving duty cycle[J]. IEEE Transactions on Magnetics, 2010, 46(6):2493-2496.
doi: 10.1109/TMAG.2010.2042043 |
[74] |
LIANG Peixin, CHAI Feng, SHEN Ke, et al. Water jacket and slot optimization of a water-cooling permanent magnet synchronous in-wheel motor[J]. IEEE Transactions on Industry Applications, 2021, 57(3):2431-2439.
doi: 10.1109/TIA.2021.3064779 |
[75] |
FAN Xinggang, LI Dawei, QU Ronghai, et al. Water cold plates for efficient cooling:Verified on a permanent-magnet machine with concentrated winding[J]. IEEE Transactions on Industrial Electronics, 2019, 67(7):5325-5336.
doi: 10.1109/TIE.41 |
[76] |
NATEGH S, ZHE H, KRINGS A, et al. Thermal modeling of directly cooled electric machines using lumped parameter and limited CFD analysis[J]. IEEE Transactions on Energy Conversion, 2013, 28(4):979-990.
doi: 10.1109/TEC.2013.2283089 |
[77] |
ZHANG Fengyu, GERADA D, XU Zeyuan, et al. A thermal modelling approach and experimental validation for an oil spray-cooled hairpin winding machine[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4):2914-2926.
doi: 10.1109/TTE.2021.3067601 |
[78] |
MARCOLINI F, DEDONATO G, CAPPONI F G, et al. Direct oil cooling of end-windings in torus-type axial-flux permanent-magnet machines[J]. IEEE Transactions on Industry Applications, 2021, 57(3):2378-2386.
doi: 10.1109/TIA.2021.3059811 |
[79] |
SHINOHARA A, INOUE Y, MORIMOTO S, et al. Direct calculation method of reference flux linkage for maximum torque per ampere control in DTC-based IPMSM drives[J]. IEEE Transactions on Power Electronics, 2017, 32(3):2114-2122.
doi: 10.1109/TPEL.2016.2569140 |
[80] | 程明, 王飒飒, 王伟. 四象限运行磁通切换永磁直线电机的MRAS无位置传感器控制[J]. 电气工程学报, 2021, 16(4):25-32. |
CHENG Ming, WANG Sasa, WANG Wei. MRAS position sensorless control of linear flux-switching permanent magnet motor for four-quadrant operation[J]. Journal of Electrical Engineering, 2021, 16(4):25-32. | |
[81] |
BEDETTI N, CALLIGARO S, OLSEN C, et al. Automatic MTPA tracking in IPMSM drives:Loop dynamics,design,and auto-tuning[J]. IEEE Transactions on Industry Applications, 2017, 53(5):4547-4558.
doi: 10.1109/TIA.2017.2708683 |
[82] | LEE K, LEE S B. MTPA operating point tracking control scheme for vector controlled PMSM drives[C]// SPEEDAM 2010,Pisa,Italy, 2010:24-28. |
[83] |
LIU Guohai, WANG Jian, ZHAO Wenxiang, et al. A novel MTPA control strategy for IPMSM drives by space vector signal injection[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12):9243-9252.
doi: 10.1109/TIE.2017.2711507 |
[84] | 刘国海, 张嘉皓, 陈前. 基于空间电压矢量注入的频率可变型五相永磁同步电机最大转矩电流比控制[J]. 电工技术学报, 2020, 35(20):4287-4295. |
LIU Guohai, ZHANG Jiahao, CHEN Qian. Variable frequency MTPA control for five-phase permanent-magnet motor based on space voltage vector injection[J]. Transactions of China Electrotechnical Society, 2020, 35(20):4287-4295. | |
[85] |
SUN Tianfu, WANG Jiabin, CHEN Xiao. Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection[J]. IEEE Transactions on Power Electronics, 2015, 30(9):5036-5045.
doi: 10.1109/TPEL.2014.2365814 |
[86] |
LEE J, NAM K, CHOI S, et al. Loss-minimizing control of PMSM with the use of polynomial approximations[J]. IEEE Transactions on Power Electronics, 2009, 24(4):1071-1082.
doi: 10.1109/TPEL.2008.2010518 |
[87] |
LI Mengdi, HUANG Sheng, WU Xuan, et al. A virtual HF signal injection based maximum efficiency per ampere tracking control for IPMSM drive[J]. IEEE Transactions on Power Electronics, 2020, 35(6):6102-6113.
doi: 10.1109/TPEL.63 |
[88] | 巫春玲, 程琰清, 刘智轩, 等. 一种永磁同步电机系统效率优化控制策略研究[J]. 电子测量技术, 2020, 43(10):36-41. |
WU Chunling, CHENG Yanqing, LIU Zhixuan, et al. Study on an efficiency optimization method for permanent magnet synchronous motor[J]. Electronic Measurement Technology, 2020, 43(10):36-41. | |
[89] |
DIECKERHOFI S, BERNET S. Power loss-oriented evaluation of high voltage IGBTs and multilevel converters in transformerless traction applications[J]. IEEE Transactions on Power Electronics, 2005, 20(6):1328-1336.
doi: 10.1109/TPEL.2005.857534 |
[90] |
HANG Jun, WU Han, DING Shichuan, et al. Improved loss minimization control for IPMSM using equivalent conversion method[J]. IEEE Transactions on Power Electronics, 2021, 36(2):1931-1940.
doi: 10.1109/TPEL.63 |
[91] | 梁宗伟, 夏加宽, 张子璇, 等. 感应电机基于最大转矩输入功率比的能效优化[J]. 电气传动, 2021, 51(6):57-61. |
LIANG Zongwei, XIA Jiakuan, ZHANG Zixuan, et al. Energy efficiency optimization of induction motor based on maximum torque per input power[J]. Electric Drive, 2021, 51(6):57-61. | |
[92] |
KOLAR J W, FRIEDLI T, RODRIGUEZ J, et al. Review of three-phase PWM AC-AC converter topologies[J]. IEEE Transactions on Industrial Electronics, 2011, 58(11):4988-5006.
doi: 10.1109/TIE.2011.2159353 |
[93] |
MAHMUD M H, WU Y, ALHOSAINI W, et al. Enhanced direct torque control for a three-level T-type inverter[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3):1638-1651.
doi: 10.1109/TTE.2021.3060384 |
[94] |
TRENTIN A, EMPRINGHAM L, LILLO L de, et al. Experimental efficiency comparison between a direct matrix converter and an indirect matrix converter using both Si IGBTs and SiC MOSFETS[J]. IEEE Transactions on Industry Applications, 2016, 52(5):4135-4145.
doi: 10.1109/TIA.2016.2573752 |
[95] |
ZHANG Di, HE Jiangbiao, PAN Di. A megawatt-scale medium-voltage high-efficiency high power density “SiC+Si” hybrid three-level ANPC inverter for aircraft hybrid-electric propulsion systems[J]. IEEE Transactions on Industry Applications, 2019, 55(60):5971-5980.
doi: 10.1109/TIA.28 |
[1] | 张新彤, 张成明, 李立毅, 傅鹏睿. 电推进用高效轻质永磁同步电机的设计方法[J]. 机械工程学报, 2023, 59(8): 181-195. |
[2] | 李春明, 鲍珂. 基于载荷传递路径的履带车辆多层级耦合动力学建模与分析[J]. 机械工程学报, 2023, 59(13): 157-174. |
[3] | 聂昕, 南博. 拼接铺层纤维增强复合材料连接结构设计与离散优化[J]. 机械工程学报, 2021, 57(7): 194-203. |
[4] | 马琛, 吉敬华, 赵文祥, 刘童. 内置式永磁同步电机的极宽调制低振噪设计*[J]. 电气工程学报, 2021, 16(4): 33-41. |
[5] | 孔祥东, 朱琦歆, 姚静, 尚耀星, 祝毅. “液压元件与系统轻量化设计制造新方法”基础理论与关键技术[J]. 机械工程学报, 2021, 57(24): 4-12. |
[6] | 尚耀星, 李瑶, 于天, 姜超凡, 王业硕, 杨光, 孔祥东, 焦宗夏. 轻量化复合材料液压缸现状及挑战[J]. 机械工程学报, 2021, 57(24): 13-38. |
[7] | 巴凯先, 康岩, 俞滨, 付康平, 黄智鹏, 徐悦鹏, 袁立鹏, 孔祥东. 足式机器人轻量化液压驱动执行器质量建模及灵敏度分析[J]. 机械工程学报, 2021, 57(24): 39-48,82. |
[8] | 俞滨, 李化顺, 巴凯先, 郑博寒, 李景彬, 袁立鹏. 足式机器人轻量化液压油源匹配设计方法研究[J]. 机械工程学报, 2021, 57(24): 58-65. |
[9] | 张超, 周雷, 赵聪, 汪帅, 赫泰然, 祝毅, 杨华勇. 轻量节能型液压阀块设计与增材制造[J]. 机械工程学报, 2021, 57(24): 123-131. |
[10] | 李永欣, 郭长春, 李凯伦, 于天. SLM制备的小长径比四棱锥点阵填充轻量化研究[J]. 机械工程学报, 2021, 57(24): 132-138. |
[11] | 赵聪, 祝毅, 张超, 蹤雪梅, 张晋, 何冰, 杨华勇. 增材制造液压集成阀块仿生结构设计[J]. 机械工程学报, 2021, 57(24): 139-146. |
[12] | 才胜, 罗颖辉, 李青林. 农业机械轻量化技术研究现状与发展趋势[J]. 机械工程学报, 2021, 57(17): 35-52. |
[13] | 程明, 张邦富, 王飒飒, 王伟. 模块化细轭部磁通切换永磁直线电机及其控制 *[J]. 电气工程学报, 2021, 16(1): 1-8. |
[14] | 李永兵, 马运五, 楼铭, 张国涛, 张庆鑫, 祁麟, 邓琳. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报, 2020, 56(6): 125-146. |
[15] | 李天箭, 丁晓红, 李郝林. 机床结构轻量化设计研究进展[J]. 机械工程学报, 2020, 56(21): 186-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||