电气工程学报 ›› 2023, Vol. 18 ›› Issue (4): 20-34.doi: 10.11985/2023.04.003
收稿日期:
2023-08-31
修回日期:
2023-10-27
出版日期:
2023-12-25
发布日期:
2024-01-12
作者简介:
李鑫宇,男,2000年生,硕士研究生。主要研究方向为电机驱动及设计。E-mail:lixinyu2302@163.com基金资助:
LI Xinyu1,2(), SUN Tianfu1(
), HUANG Shijun2, LIANG Jianing1
Received:
2023-08-31
Revised:
2023-10-27
Online:
2023-12-25
Published:
2024-01-12
摘要:
目前,永磁同步电机的功率密度、转矩密度正在快速提升,电机系统单位体积下的损耗和发热功率也在快速升高。这给电机系统的散热、温度场建模和热管理带来很大挑战。目前国内外文献关于电机温度场建模和热管理方面的文献数量众多,方法种类繁杂,缺乏系统的分析和归纳。针对这一问题,本文对近年来国内外电机温度场分析、建模和热管理的方法进行了梳理和分析,以期能够较为系统地呈现电机温度建模与热管理的发展现状和发展趋势。
中图分类号:
李鑫宇, 孙天夫, 黄世军, 梁嘉宁. 永磁同步电机温度建模与热管理方法综述*[J]. 电气工程学报, 2023, 18(4): 20-34.
LI Xinyu, SUN Tianfu, HUANG Shijun, LIANG Jianing. Review and Perspectives on Thermal Management Methods for Permanent Magnet Synchronous Motors[J]. Journal of Electrical Engineering, 2023, 18(4): 20-34.
[1] |
TRAN D D, VAFAEIPOUR M, EL BAGHDADI M, et al. Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains:Topologies and integrated energy management strategies[J]. Renewable and Sustainable Energy Reviews, 2020, 119:109596.
doi: 10.1016/j.rser.2019.109596 |
[2] |
SOVACOOL B K, GRIFFITHS S. The cultural barriers to a low-carbon future:A review of six mobility and energy transitions across 28 countries[J]. Renewable and Sustainable Energy Reviews, 2020, 119:109569.
doi: 10.1016/j.rser.2019.109569 |
[3] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022. |
National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2022. | |
[4] | KIRCHGÄSSNER W, WALLSCHEID O, BÖCKER J. Empirical evaluation of exponentially weighted moving averages for simple linear thermal modeling of permanent magnet synchronous machines[C]// 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019:318-323. |
[5] |
LI B, KUO H, WANG X, et al. Thermal management of electrified propulsion system for low-carbon vehicles[J]. Automotive Innovation, 2020, 3(4):299-316.
doi: 10.1007/s42154-020-00124-y |
[6] | 侯高林. 电动汽车驱动电机温度场分析及热管理系统研究[D]. 长春: 吉林大学, 2022. |
HOU Gaolin. Analysis on temperature field and thermal management system of electric vehicle driving motor[D]. Changchun: Jilin University, 2022. | |
[7] | 赵蒙. 电动车辆用永磁同步电机驱动系统及热管理技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
ZHAO Meng. Research on PMSM drive system and thermal management technology for electric vehicles[D]. Harbin: Harbin Institute of Technology, 2021. | |
[8] | RHEBERGEN C, BILGIN B, EMADI A, et al. Enhancement of electric motor thermal management through axial cooling methods:A materials approach[C]// 2015 IEEE Energy Conversion Congress and Exposition (ECCE), September 20-24,2015,Montreal,QC,Canada. IEEE, 2015:5682-5688. |
[9] |
YAN H, ZHAO W, BUTICCHI G, et al. Active thermal control for modular power converters in multi-phase permanent magnet synchronous motor drive system[J]. IEEE Access, 2021, 9:7054-7063.
doi: 10.1109/Access.6287639 |
[10] |
GUNDABATTINI E, MYSTKOWSKI A, RAJA S R, et al. Water cooling,PSG,PCM,Cryogenic cooling strategies and thermal analysis (experimental and analytical) of a permanent magnet synchronous motor:A review[J]. Sādhanā, 2021, 46(3):124.
doi: 10.1007/s12046-021-01650-z |
[11] |
WILSON S D, STEWART P, TAYLOR B P. Methods of resistance estimation in permanent magnet synchronous motors for real-time thermal management[J]. IEEE Transactions on Energy Conversion, 2010, 25(3):698-707.
doi: 10.1109/TEC.2010.2051811 |
[12] |
KRAL C, HAUMER A, LEE S B. A practical thermal model for the estimation of permanent magnet and stator winding temperatures[J]. IEEE Transactions on Power Electronics, 2014, 29(1):455-464.
doi: 10.1109/TPEL.2013.2253128 |
[13] | 邱旭. 高速永磁电机损耗的计算分析[D]. 沈阳: 沈阳工业大学, 2022. |
QIU Xu. Calculation and analysis of loss of high-speed permanent magnet machine[D]. Shenyang: Shenyang University of Technology, 2022. | |
[14] | IONEL D, POPESCU M, COSSAR C, et al. A general model of the laminated steel losses in electric motors with PWM voltage supply[C]// 2008 IEEE Industry Applications Society Annual Meeting, October 5-9,2008,Edmonton,Alberta,Canada. IEEE, 2008:1-7. |
[15] |
YAMAZAKI K, FUKUSHIMA N. Iron-loss modeling for rotating machines:Comparison between Bertotti’s three-term expression and 3-D Eddy-current analysis[J]. IEEE Transactions on Magnetics, 2010, 46(8):3121-3124.
doi: 10.1109/TMAG.2010.2044384 |
[16] |
YAMAZAKI K, TANIDA M, SATOMI H. Calculation of iron loss in rotating machines by direct consideration of eddy currents in electrical steel sheets[J]. Electrical Engineering in Japan, 2011, 176(3):69-80.
doi: 10.1002/eej.v176.3 |
[17] | LORENZ J. Electrical machine iron loss predictions:A unique engineering approach utilizing transient finite element methods - Part 1:Theory and calculation method[C]// 2013 IEEE Electric Ship Technologies Symposium (ESTS), April 22-24,2013,Arlington,VA,USA. IEEE, 2013:36-42. |
[18] |
LI L, LI W, LI D, et al. Influence of sleeve thickness and various structures on eddy current losses of rotor parts and temperature field in surface mounted permanent-magnet synchronous motor[J]. IET Electric Power Applications, 2018, 12(8):1183-1191.
doi: 10.1049/elp2.v12.8 |
[19] | 张炳义, 蒋鑫, 冯桂宏. 磁钢充磁方式对高速永磁电机性能的影响研究[J]. 机电工程, 2018, 35(7):751-754. |
ZHANG Bingyi, JIANG Xin, FENG Guihong. Effect of magnetic magnetizing method on the performance of high speed permanent magnet motor[J]. Mechanical and Electrical Engineering, 2018, 35(7):751-754. | |
[20] |
BAUMGARTNER T, BURKART R M, KOLAR J W. Analysis and design of a 300-W 500 000-r/min slotless self-bearing permanent-magnet motor[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8):4326-4336.
doi: 10.1109/TIE.2013.2284159 |
[21] |
HUANG Z, FANG J. Multiphysics design and optimization of high-speed permanent-magnet electrical machines for air blower applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):2766-2774.
doi: 10.1109/TIE.2016.2518121 |
[22] |
KUOSA M, SALLINEN P, LARJOLA J. Numerical and experimental modelling of gas flow and heat transfer in the air gap of an electric machine[J]. Journal of Thermal Science, 2004, 13(3):264-278.
doi: 10.1007/s11630-004-0041-4 |
[23] |
PILLAY P, AL-BADRI M, ANGERS P, et al. A new stray-load loss formula for small and medium-sized induction motors[J]. IEEE Transactions on Energy Conversion, 2016, 31(3):1221-1227.
doi: 10.1109/TEC.2016.2539959 |
[24] | CICHON K, KLIKS A, BOGUCKA H. Energy-efficient cooperative spectrum sensing:A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3):1861-1886. |
[25] | 朱巍. 电动车用高功率密度永磁同步电机热管理系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
ZHU Wei. Research on the thermal management of high power density permanent magnet synchronous motor in HEV[D]. Harbin: Harbin Institute of Technology, 2010. | |
[26] | NOLLAU A, GERLING D. A flux barrier cooling for traction motors in hybrid drives[C]// 2015 IEEE International Electric Machines & Drives Conference (IEMDC). 2015:1103-1108. |
[27] | WANG S, LI Y, LI Y Z, et al. Analysis of power loss of permanent magnet synchronous motors in more-electric-aircraft considering the impact of temperature[C]// 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018:1184-1189. |
[28] |
NATEGH S, WALLMARK O, LEKSELL M, et al. Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling[J]. IEEE Transactions on Energy Conversion, 2012, 27(2):477-488.
doi: 10.1109/TEC.2012.2188295 |
[29] |
WANG X, LI B, GERADA D, et al. A critical review on thermal management technologies for motors in electric cars[J]. Applied Thermal Engineering, 2022, 201:117758.
doi: 10.1016/j.applthermaleng.2021.117758 |
[30] |
CHEN H, YANG H, CHEN Y, et al. Reliability assessment of the switched reluctance motor drive under single switch chopping strategy[J]. IEEE Transactions on Power Electronics, 2016, 31(3):2395-2408.
doi: 10.1109/TPEL.2015.2429557 |
[31] |
LÜ L, XIONG W, HU C. Equivalent magnetic circuit method of estimating iron losses in induction motor spindles[J]. Scientific Reports, 2022, 12(1):9509.
doi: 10.1038/s41598-022-13055-x pmid: 35681068 |
[32] |
GALLONI E, PARISI P, MARIGNETTI F, et al. CFD analyses of a radial fan for electric motor cooling[J]. Thermal Science and Engineering Progress, 2018, 8:470-476.
doi: 10.1016/j.tsep.2018.10.003 |
[33] |
NAKAHAMA T, BISWAS D, KAWANO K, et al. Improved cooling performance of large motors using fans[J]. IEEE Transactions on Energy Conversion, 2006, 21(2):324-331.
doi: 10.1109/TEC.2006.874245 |
[34] |
MEZANI S, TAKORABET N, LAPORTE B. A combined electromagnetic and thermal analysis of induction motors[J]. IEEE Transactions on Magnetics, 2005, 41(5):1572-1575.
doi: 10.1109/TMAG.2005.845044 |
[35] | HUANG Z, NATEGH S, LASSILA V, et al. Direct oil cooling of traction motors in hybrid drives[C]// 2012 IEEE International Electric Vehicle Conference, March 4-8,2012,Greenville,SC,USA. IEEE, 2012:1-8. |
[36] |
ROY R, RAMASAMI S, CHOKKALINGAM L N. Review on thermal behavior and cooling aspects of axial flux permanent magnet motors:A mechanical approach[J]. IEEE Access, 2023, 11:6822-6836.
doi: 10.1109/ACCESS.2023.3235782 |
[37] | LUNDMARK S T, ACQUAVIVA A, BERGQVIST A. Coupled 3-D thermal and electromagnetic modelling of a liquid-cooled transverse flux traction motor[C]//2018 XIII International Conference on Electrical Machines (ICEM). Alexandroupoli:IEEE, 2018:2640-2646. |
[38] |
KAUH S K, HAHN S Y, LEE Y. Thermal analysis of induction motor with forced cooling channels[J]. IEEE Transactions on Magnetics, 2000, 36(4):1398-1402.
doi: 10.1109/20.877700 |
[39] | BAGGU M M, HESS H L, RINK K. Thermal modeling of “direct lamination cooling (DLC)” induction motor for hybrid electric vehicle applications[C]// 2005 IEEE Vehicle Power and Propulsion Conference. IEEE, 2005:468-472. |
[40] | BOGLIETTI A, CAVAGNINO A, STATON D A. TEFC induction motors thermal models:A parameter sensitivity analysis[C]// Conference Record of the 2004 IEEE Industry Applications Conference,2004. 39th IAS Annual Meeting, October 3-7,2004,Seattle,WA,USA. IEEE, 2004:2469-2476. |
[41] | HOU Z, DU J, WEI Y. Thermal analysis of transverse flux linear switched reluctance motor based on lumped parameter thermal network method[C]// 2021 24th International Conference on Electrical Machines and Systems (ICEMS),October 31-November 3,2021,Gyeongju,Republic of Korea. IEEE, 2021:1490-1495. |
[42] |
CAVAZZUTI M, GASPARI G, PASQUALE S, et al. Thermal management of a formula E electric motor:Analysis and optimization[J]. Applied Thermal Engineering, 2019, 157:113733.
doi: 10.1016/j.applthermaleng.2019.113733 |
[43] |
CAI X, CHENG M, ZHU S, et al. Thermal modeling of flux-switching permanent-magnet machines considering anisotropic conductivity and thermal contact resistance[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6):3355-3365.
doi: 10.1109/TIE.2016.2522942 |
[44] |
SUN T, WANG J, GRIFFO A, et al. Active thermal management for interior permanent magnet synchronous machine (IPMSM) drives based on model predictive control[J]. IEEE Transactions on Industry Applications, 2018, 54(5):4506-4514.
doi: 10.1109/TIA.2018.2843350 |
[45] |
WALLSCHEID O, BOCKER J. Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors[J]. IEEE Transactions on Energy Conversion, 2016, 31(1):354-365.
doi: 10.1109/TEC.2015.2473673 |
[46] |
NARASIMHULU T, RAO M, PASUMARTHI. Lumped parameter thermal model for axial flux surface mounted permanent magnet BLDC machine[J]. Materials Today:Proceedings, 2018, 5(1):66-73.
doi: 10.1016/j.matpr.2017.11.054 |
[47] | CHIN Y K, STATON D A. Transient thermal analysis using both lumped-circuit approach and finite element method of a permanent magnet traction motor[C]// 2004 IEEE Africon. 7th Africon Conference in Africa (IEEE Cat. No.04CH37590), September 15-17,2004,Gaborone,Botswana. IEEE, 2004:1027-1035. |
[48] |
TRIGEOL J F, BERTIN Y, LAGONOTTE P. Thermal modeling of an induction machine through the association of two numerical approaches[J]. IEEE Transactions on Energy Conversion, 2006, 21(2):314-323.
doi: 10.1109/TEC.2005.859964 |
[49] |
NATEGH S, ZHANG H, WALLMARK O, et al. Transient thermal modeling and analysis of railway traction motors[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1):79-89.
doi: 10.1109/TIE.41 |
[50] | XIONG Y, WANG B, CHU C C, et al. Electric vehicle driver clustering using statistical model and machine learning[C]//2018 IEEE Power & Energy Society General Meeting (PESGM). Portland, OR:IEEE, 2018:1-5. |
[51] | PILAT M. Controlling the charging of electric vehicles with neural networks[C]// 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro: IEEE, 2018:1-8. |
[52] |
WANG X, YAN Y, MENG X, et al. A general method to predict the performance of closed pulsating heat pipe by artificial neural network[J]. Applied Thermal Engineering, 2019, 157:113761.
doi: 10.1016/j.applthermaleng.2019.113761 |
[53] |
LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82:1013.
doi: 10.1086/112164 |
[54] |
HOU Q, KRUISBRINK A C H, PEARCE F R, et al. Smoothed particle hydrodynamics simulations of flow separation at bends[J]. Computers & Fluids, 2014, 90:138-146.
doi: 10.1016/j.compfluid.2013.11.019 |
[55] | 何联格, 胡书凡, 屈翔. 油水复合冷却下永磁同步电机温升特性[J]. 重庆理工大学学报, 2023, 37(2):97-103. |
HE Liange, HU Shufan, QU Xiang. Temperature rise characteristics of a permanent magnet synchronous motor under oil-water compound cooling[J]. Journal of Chongqing University of Technology, 2023, 37(2):97-103. | |
[56] | STATON D, BOGLIETTI A, CAVAGNINO A. Solving the more difficult aspects of electric motor thermal analysis[C]// IEEE International Electric Machines and Drives Conference,2003. IEMDC’03. Madison,WI,USA:IEEE, 2003:747-755. |
[57] |
NERG J, RILLA M, PYRHONEN J. Thermal analysis of radial-flux electrical machines with a high power density[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10):3543-3554.
doi: 10.1109/TIE.2008.927403 |
[58] |
RAMARATHNAM S, MOHAMMED A K, BILGIN B, et al. A review of structural and thermal analysis of traction motors[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3):255-265.
doi: 10.1109/TTE.2015.2476478 |
[59] | WROBEL R, AYAT S, GODBEHERE J. A systematic experimental approach in deriving stator-winding heat transfer[C]//2017 IEEE International Electric Machines and Drives Conference (IEMDC). Miami,FL, USA:IEEE, 2017:1-8. |
[60] |
BOGLIETTI A, CAVAGNINO A, STATON D. Determination of critical parameters in electrical machine thermal models[J]. IEEE Transactions on Industry Applications, 2008, 44(4):1150-1159.
doi: 10.1109/TIA.2008.926233 |
[61] |
TANG Y, CHEN L, CHAI F, et al. Thermal modeling and analysis of active and end windings of enclosed permanent-magnet synchronous in-wheel motor based on multi-block method[J]. IEEE Transactions on Energy Conversion, 2020, 35(1):85-94.
doi: 10.1109/TEC.60 |
[62] |
HUANG X, TAN Q, LI L, et al. Winding temperature field model considering void ratio and temperature rise of a permanent-magnet synchronous motor with high current density[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3):2168-2177.
doi: 10.1109/TIE.2016.2625242 |
[63] |
IDOUGHI L, MININGER X, BOUILLAULT F, et al. Thermal model with winding homogenization and fit discretization for stator slot[J]. IEEE Transactions on Magnetics, 2011, 47(12):4822-4826.
doi: 10.1109/TMAG.2011.2159013 |
[64] |
LIU H, AYAT S, WROBEL R, et al. Comparative study of thermal properties of electrical windings impregnated with alternative varnish materials[J]. The Journal of Engineering, 2019, 2019(17):3736-3741.
doi: 10.1049/tje2.v2019.17 |
[65] |
GARUD K S, LEE M Y. Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor[J]. International Journal of Heat and Mass Transfer, 2023, 201:123596.
doi: 10.1016/j.ijheatmasstransfer.2022.123596 |
[66] | GHAHFAROKHI P S, KALLASTE A, VAIMANN T, et al. Thermal analysis of totally enclosed fan cooled synchronous reluctance motor-state of art[C]// IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon,Portugal:IEEE, 2019:4372-4377. |
[67] |
HOSAIN M L, BEL F R, RÖNNBERG K. Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines[J]. Applied Energy, 2017, 207:624-633.
doi: 10.1016/j.apenergy.2017.07.011 |
[68] | ROMANAZZI P, HOWEY D A. Air-gap convection in a switched reluctance machine[C]// 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER). Monte Carlo: IEEE, 2015:1-7. |
[69] |
BECKER K M, KAYE J. Measurements of diabatic flow in an annulus with an inner rotating cylinder[J]. Journal of Heat Transfer, 1962, 84(2):97-104.
doi: 10.1115/1.3684335 |
[70] |
STATON D A, CAVAGNINO A. Convection heat transfer and flow calculations suitable for electric machines thermal models[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10):3509-3516.
doi: 10.1109/TIE.2008.922604 |
[71] |
FÉNOT M, BERTIN Y, DORIGNAC E, et al. A review of heat transfer between concentric rotating cylinders with or without axial flow[J]. International Journal of Thermal Sciences, 2011, 50(7):1138-1155.
doi: 10.1016/j.ijthermalsci.2011.02.013 |
[72] |
HOWEY D A, CHILDS P R N, HOLMES A S. Air-gap convection in rotating electrical machines[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3):1367-1375.
doi: 10.1109/TIE.2010.2100337 |
[73] |
REHMAN Z, SEONG K. Three-D numerical thermal analysis of electric motor with cooling jacket[J]. Energies, 2018, 11(1):92.
doi: 10.3390/en11010092 |
[74] |
SUN T, WANG J, CHEN X. Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection[J]. IEEE Transactions on Power Electronics, 2015, 30(9):5036-5045.
doi: 10.1109/TPEL.2014.2365814 |
[75] |
SUN T, WANG J. Extension of virtual-signal-injection- based MTPA control for interior permanent-magnet synchronous machine drives into the field-weakening region[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11):6809-6817.
doi: 10.1109/TIE.2015.2438772 |
[76] | HUBER T, BOCKER J, PETERS W. A low-order thermal model for monitoring critical temperatures in permanent magnet synchronous motors[C]// 7th IET International Conference on Power Electronics,Machines and Drives (PEMD 2014). Manchester, UK: Institution of Engineering and Technology, 2014:2.7.04. |
[77] |
BROECK C H van der, DE DONCKER R W. Increasing torque capability of ac drives via active thermal management of inverters[J]. IEEE Transactions on Industry Applications, 2021, 57(6):6277-6287.
doi: 10.1109/TIA.2021.3103812 |
[78] |
FALCK J, FELGEMACHER C, ROJKO A, et al. Reliability of power electronic systems:An industry perspective[J]. IEEE Industrial Electronics Magazine, 2018, 12(2):24-35.
doi: 10.1109/MIE.2018.2825481 |
[79] |
MA K, CHOI U M, BLAABJERG F. Prediction and validation of wear-out reliability metrics for power semiconductor devices with mission profiles in motor drive application[J]. IEEE Transactions on Power Electronics, 2018, 33(11):9843-9853.
doi: 10.1109/TPEL.63 |
[80] | CHEN Y C, CHEN C L, DONG Q, et al. Thermal management for motor[C]// ITherm 2002 Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258). San Diego,CA,USA:IEEE, 2002:545-551. |
[81] |
ULBRICH S, KOPTE J, PROSKE J. Cooling fin optimization on a tefc electrical machine housing using a 2-D conjugate heat transfer model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2):1711-1718.
doi: 10.1109/TIE.2017.2748051 |
[82] | KIMOTHO J K, HWANG P. Thermal management of electric vehicle BLDC motor[C]// 16th Asia Pacific Automotive Engineering Conference. 2011:2011-28-0134. |
[83] |
PENG H S, LAI F H. Investigation of parameters affecting heat transfer and fluid flow of a TEFC electric motor by using Taguchi method[J]. IOP Conference Series:Materials Science and Engineering, 2019, 491:012021.
doi: 10.1088/1757-899X/491/1/012021 |
[84] |
KIM C, LEE K S. Thermal nexus model for the thermal characteristic analysis of an open-type air-cooled induction motor[J]. Applied Thermal Engineering, 2017, 112:1108-1116.
doi: 10.1016/j.applthermaleng.2016.10.197 |
[85] | ROFFI M, FERREIRA F J T E, DE ALMEIDA A T. Comparison of different cooling fan designs for electric motors[C]//2017 IEEE International Electric Machines and Drives Conference (IEMDC). Miami,FL, USA:IEEE, 2017:1-7. |
[86] |
GILSON G M, PICKERING S J, HANN D B, et al. Piezoelectric fan cooling:A novel high reliability electric machine thermal management solution[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11):4841-4851.
doi: 10.1109/TIE.2012.2224081 |
[87] |
TONG W, WU S, TANG R. Totally enclosed self-circulation axial ventilation system design and thermal analysis of a 1.65-MW direct-drive PMSM[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12):9388-9398.
doi: 10.1109/TIE.2018.2823698 |
[88] |
RUUSKANEN V, NERG J, PYRHONEN J. Effect of lamination stack ends and radial cooling channels on no-load voltage and inductances of permanent-magnet synchronous machines[J]. IEEE Transactions on Magnetics, 2011, 47(11):4643-4649.
doi: 10.1109/TMAG.20 |
[89] |
LI W, CAO Z, ZHANG X. Thermal analysis of the solid rotor permanent magnet synchronous motors with air-cooled hybrid ventilation systems[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2):1146-1156.
doi: 10.1109/TIE.2021.3057002 |
[90] |
WEN J, ZHENG J. Numerical analysis of the external wind path for medium-size high-voltage asynchronous motors[J]. Applied Thermal Engineering, 2015, 90:869-878.
doi: 10.1016/j.applthermaleng.2015.07.065 |
[91] |
MARCOLINI F, DE DONATO G, CAPPONI F G, et al. Direct oil cooling of end-windings in torus-type axial-flux permanent-magnet machines[J]. IEEE Transactions on Industry Applications, 2021, 57(3):2378-2386.
doi: 10.1109/TIA.2021.3059811 |
[92] |
MICALLEF C, PICKERING S J, SIMMONS K A, et al. Improved cooling in the end region of a strip-wound totally enclosed fan-cooled induction electric machine[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10):3517-3524.
doi: 10.1109/TIE.2008.2003101 |
[93] |
MONTONEN J, NERG J, POLIKARPOVA M, et al. Integration principles and thermal analysis of an oil-cooled and -lubricated permanent magnet motor planetary gearbox drive system[J]. IEEE Access, 2019, 7:69108-69118.
doi: 10.1109/Access.6287639 |
[94] |
SUN Y, ZHANG S, YUAN W, et al. Applicability study of the potting material based thermal management strategy for permanent magnet synchronous motors[J]. Applied Thermal Engineering, 2019, 149:1370-1378.
doi: 10.1016/j.applthermaleng.2018.12.141 |
[95] | POLIKARPOVA M, LINDH P M, TAPIA J A, et al. Application of potting material for a 100 kW radial flux PMSM[C]//2014 International Conference on Electrical Machines (ICEM). Berlin, Germany:IEEE, 2014:2146-2151. |
[96] |
GALEA M, GERADA C, RAMINOSOA T, et al. A thermal improvement technique for the phase windings of electrical machines[J]. IEEE Transactions on Industry Applications, 2012, 48(1):79-87.
doi: 10.1109/TIA.2011.2175470 |
[97] |
WROBEL R, HUSSEIN A. A feasibility study of additively manufactured heat guides for enhanced heat transfer in electrical machines[J]. IEEE Transactions on Industry Applications, 2020, 56(1):205-215.
doi: 10.1109/TIA.28 |
[98] |
VANSOMPEL H, SERGEANT P. Extended end-winding cooling insert for high power density electric machines with concentrated windings[J]. IEEE Transactions on Energy Conversion, 2020, 35(2):948-955.
doi: 10.1109/TEC.60 |
[99] |
FANG G, YUAN W, YAN Z, et al. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor[J]. Applied Thermal Engineering, 2019, 152:594-604.
doi: 10.1016/j.applthermaleng.2019.02.120 |
[100] | CHAI F, CAO Y, PEI Y. Design and analysis of high torque density permanent magnet synchronous motor based on heat pipe[C]// 2022 25th International Conference on Electrical Machines and Systems (ICEMS). Chiang Mai,Thailand:IEEE, 2022:1-6. |
[1] | 张新彤, 张成明, 李立毅, 傅鹏睿. 电推进用高效轻质永磁同步电机的设计方法[J]. 机械工程学报, 2023, 59(8): 181-195. |
[2] | 夏亮, 孙天夫, 李鑫宇, 谭先锋, 郑登华. 基于线性自抗扰控制技术的伺服控制系统研究*[J]. 电气工程学报, 2023, 18(4): 43-49. |
[3] | 顾子杰, 卜飞飞, 张得礼, 董兆鹏, 徐振缘, 孙鹏宇. 考虑参数失配的永磁同步电机电流预测控制研究*[J]. 电气工程学报, 2023, 18(4): 50-57. |
[4] | 冯琪茗, 董秀成, 刘元. 一种新型趋近律的PMSM模糊自适应终端滑模控制*[J]. 电气工程学报, 2023, 18(4): 74-83. |
[5] | 朱国宇, 安兴科, 诸德宏, 陈前. 基于改进自适应超螺旋观测器的永磁同步电机无位置控制*[J]. 电气工程学报, 2023, 18(4): 84-95. |
[6] | 李迎杰, 刘旭东. 基于高阶滑模观测器和改进PLL的永磁同步电机无传感器控制*[J]. 电气工程学报, 2023, 18(4): 96-105. |
[7] | 陈前, 陈鑫, 颜黎浩, 史浩, 韩鑫. 无电解电容五相永磁同步电机驱动系统主动阻尼控制策略*[J]. 电气工程学报, 2023, 18(4): 106-113. |
[8] | 戴显阳, 陈前, 宋向金, 刘正蒙, 徐高红. 采用贝叶斯优化和多尺度卷积网络的五相永磁同步电机匝间短路诊断*[J]. 电气工程学报, 2023, 18(4): 114-123. |
[9] | 张荣芸, 王朕, 时培成, 赵林峰, 刘亚铭, 张斌. 基于分数阶全局滑模与Elman神经网络磁链观测的PMSM转矩脉动抑制研究*[J]. 电气工程学报, 2023, 18(3): 154-163. |
[10] | 许家群, 陈腾宇. 前置滤波器永磁同步电机的电流环参数多目标优化设计[J]. 电气工程学报, 2023, 18(3): 164-174. |
[11] | 张冰鑫, 刘侃, 李跃, 胡伟, 黄庆, 陈泳丹. 基于累积误差补偿的永磁同步电机低速插值控制策略*[J]. 电气工程学报, 2023, 18(3): 145-153. |
[12] | 王群京, 郑耀达, 刘先增. 基于结构参数优化的电机振动噪声的抑制研究*[J]. 电气工程学报, 2023, 18(2): 16-25. |
[13] | 王杰, 周立, 苏美霞, 王慧玲. 基于模糊控制的自适应超螺旋滑模观测器无传感器控制*[J]. 电气工程学报, 2023, 18(1): 32-42. |
[14] | 杨洛鸿, 刘侃, 胡伟, 周世超, 黄庆, 陈泳丹. 基于交轴磁链辨识的永磁同步电机位置传感器零位校正方法*[J]. 电气工程学报, 2022, 17(4): 163-173. |
[15] | 周立, 苏美霞, 王杰. 永磁同步电机模糊多矢量模型预测控制*[J]. 电气工程学报, 2022, 17(4): 181-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||