电气工程学报 ›› 2022, Vol. 17 ›› Issue (4): 103-112.doi: 10.11985/2022.04.011
• 特邀专栏:电化学储能系统安全管理与运维 • 上一篇 下一篇
张宇鑫1(), 武建华2,3(
), 郑林锋2,3(
), 叶涛1(
)
收稿日期:
2022-09-01
修回日期:
2022-11-03
出版日期:
2022-12-25
发布日期:
2023-02-03
通讯作者:
郑林锋,男,1989年生,博士,副教授。主要研究方向为新能源汽车电池管理系统和电力储能系统。E-mail:lfzheng@jnu.edu.cn
作者简介:
张宇鑫,男,1999年生,硕士研究生。主要研究方向为数字孪生锂电池管理系统。E-mail:zhangyuxin991024@foxmail.com基金资助:
ZHANG Yuxin1(), WU Jianhua2,3(
), ZHENG Linfeng2,3(
), YE Tao1(
)
Received:
2022-09-01
Revised:
2022-11-03
Online:
2022-12-25
Published:
2023-02-03
Contact:
ZHENG Linfeng, E-mail:lfzheng@jnu.edu.cn
摘要:
科学可靠的电池管理系统是锂离子电池储能系统安全高效应用的关键。传统的电池管理系统存在计算资源少、数据处理能力弱等问题,使得智能管控算法和高仿真度模型的应用具有局限性。以信息物理一体化为特征的数字孪生技术为电池管理系统的发展带来新的契机,通过建立与电池物理实体相互映射的数字孪生体,虚实交互反馈、机理与数据融合,实现智能电池管理系统的开发。系统性介绍数字孪生的技术体系及其功能,包含数据保障层、建模计算层、功能应用层和人机交互层等;分析了电池数字孪生体构建中的模型建模、数据与机理模型融合等重点技术。在此基础上,阐明了基于数字孪生的锂离子电池管理系统的设计框架,旨在为构建智能管理系统的研究提供指导与参考。
中图分类号:
张宇鑫, 武建华, 郑林锋, 叶涛. 基于数字孪生的锂离子电池管理系统设计分析*[J]. 电气工程学报, 2022, 17(4): 103-112.
ZHANG Yuxin, WU Jianhua, ZHENG Linfeng, YE Tao. Design and Analysis of Lithium-ion Battery Management System Based on Digital Twin[J]. Journal of Electrical Engineering, 2022, 17(4): 103-112.
[1] | 曹志成, 周开运, 朱家立, 等. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8):2664-2670. |
CAO Zhicheng, ZHOU Kaiyun, ZHU Jiali, et al. Chinese patent analysis on fire protection technology of lithium ion battery energy storage system[J]. Energy Storage Science & Technology, 2022, 11(8):2664-2670. | |
[2] | 汪菲娜. 电化学储能项目投资构成及经济指标分析[J]. 价值工程, 2022, 41(14):22-25. |
WANG Feina. Investment structure and economic index analysis of electrochemical energy storage project[J]. Value Engineering, 2002, 41(14):22-25. | |
[3] |
MENG J, LUO G, RICCO M, et al. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5):659-675.
doi: 10.3390/app8050659 |
[4] |
WU B, WIDANAGE W D, YANG S, et al. Battery digital twins:Perspectives on the fusion of models,data and artificial intelligence for smart battery management systems[J]. Energy and AI, 2020, 1:100016.
doi: 10.1016/j.egyai.2020.100016 |
[5] |
TAO F, ZHANG H, LIU A, et al. Digital twin in industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2018, 15(4):2405-2415.
doi: 10.1109/TII.2018.2873186 |
[6] | 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. |
ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. The connotation,architecture and development trend of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768. | |
[7] |
陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1):1-16.
doi: 10.13196/j.cims.2021.01.001 |
TAO Fei, ZHANG He, QI Qinglin, et al. Theory and application of digital twin model[J]. Computer Integrated Manufacturing Systems, 2021, 27(1):1-16. | |
[8] |
ROSEN R, VON W G, LO G, et al. About the importance of autonomy and digital twins for the future of manufacturing[J]. IFAC-PapersOnLine, 2015, 48(3):567-572.
doi: 10.1016/j.ifacol.2015.06.141 |
[9] | GRIEVES M. Digital twin:Manufacturing excellence through virtual factory replication[R/OL]. White Paper, 2014, 1(2014):1-7. |
[10] |
GITHENS G. Product lifecycle management:Driving the next generation of lean thinking by Michael Grieves[J]. Journal of Product Innovation Management, 2007, 24(3):278-280.
doi: 10.1111/j.1540-5885.2007.00250_2.x |
[11] | GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US Air Force vehicles[C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012:1818. |
[12] | RIOS J, HERNANDEZ J C, OLIVA M, et al. Product avatar as digital counterpart of a physical individual product:Literature review and implications in an aircraft[J]. Transdisciplinary Lifecycle Analysis of Systems, 2015:657-666. |
[13] |
BATTY M. Digital twins[J]. Environment and Planning B:Urban Analytics and City Science, 2018, 45(5):817-820.
doi: 10.1177/2399808318796416 |
[14] | 陈旭海, 罗景生, 陈永福, 等. 基于Ansys的磷酸铁锂储能电池系统热分析及优化[J]. 电器与能效管理技术, 2020(10):41-46. |
CHEN Xuhai, LUO Jingsheng, CHEN Yongfu, et al. Thermal analysis and optimization of lithium iron phosphate energy storage battery system based on Ansys[J]. Electrical Appliances & Energy Efficiency Management Technology, 2020(10):41-46. | |
[15] |
李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报, 2019, 31(3):385-392.
doi: 10.16182/j.issn1004731x.joss.19-0025 |
LI Xin, LIU Xiu, WAN Xinxin. Review of application and security development of digital twin[J]. Journal of System Simulation, 2019, 31(3):385-392.
doi: 10.16182/j.issn1004731x.joss.19-0025 |
|
[16] | 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1):1-9. |
TAO Fei, ZHANG Meng, CHENG Jiangfeng, et al. Digital twin workshop:A new mode of future workshop run[J]. Computer Integrated Manufacturing Systems, 2017, 23(1):1-9. | |
[17] |
TAO F, CHENG J, QI Q, et al. Digital twin-driven product design,manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9):3563-3576.
doi: 10.1007/s00170-017-0233-1 |
[18] | 郭东升, 鲍劲松, 史恭威, 等. 基于数字孪生的航天结构件制造车间建模研究[J]. 东华大学学报, 2018, 44(4):578-585,607. |
GUO Dongsheng, BAO Jinsong, SHI Gongwei, et al. Modeling of aerospace structural parts manufacturing workshop based on digital twin[J]. Journal of Donghua University, 2018, 44(4):578-585,607. | |
[19] | 陶飞, 张贺, 戚庆林, 等. 数字孪生十问:分析与思考[J]. 计算机集成制造系统, 2020, 26(1):1-17. |
TAO Fei, ZHANG He, QI Qinglin, et al. Digital twin 10 q:Analysis and thinking[J]. Computer Integrated Manufacturing Systems, 2020, 26(1):1-17. | |
[20] | 汪玉洁, 杨晓宇, 陈宗海. 基于数字孪生的电动汽车动力系统实验教学方案[J]. 教育现代化, 2019, 6(83):76-78. |
WANG Yujie, YANG Xiaoyu, CHEN Zonghai. Electric power system based on digital twin experiment teaching plan[J]. Journal of Education Modernization, 2019, 6(83):76-78. | |
[21] | MERKLE L, SEGURA A S, GRUMMEL J T, et al. Architecture of a digital twin for enabling digital services for battery systems[C]// 2019 IEEE International Conference on Industrial Cyber Physical Systems(ICPS). IEEE, 2019:155-160. |
[22] | 熊瑞, 田金鹏, 卢家欢. 一种应用数字孪生技术的锂离子电池寿命预测方法:中国,CN111610448A[P]. 2020-09-01. |
XIONG Rui, TIAN Jinpeng, LU Jiahuan. A method for life prediction of lithium ion battery based on digital twin technology:China,CN111610448A[P]. 2020-09-01. | |
[23] |
LI W, RENTEMEISTER M, BADEDA J, et al. Digital twin for battery systems:Cloud battery management system with online state-of-charge and state-of-health estimation[J]. Journal of Energy Storage, 2020, 30:101557.
doi: 10.1016/j.est.2020.101557 |
[24] |
MADNI A M, MADNI C C, LUCERO S D. Leveraging digital twin technology in model-based systems engineering[J]. Systems, 2019, 7(1):7-18.
doi: 10.3390/systems7010007 |
[25] | TUEGEL E. The airframe digital twin:Some challenges to realization[C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012:1812. |
[26] | 张天瀛, 姬杭. 数字孪生综述[C]// 2019中国系统仿真与虚拟现实技术高层论坛论文集, 2019:77-82. |
ZHANG Tianying, JI Hang. Digital twin review[C]// 2019 China System Simulation and Virtual Reality Technology BBS on Top, 2019:77-82. | |
[27] | ZAKRAJSEK A J, MALL S. The development and use of a digital twin model for tire touchdown health monitoring[C]// 58th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference, 2017:863. |
[28] | MERKLE L. Cloud-based battery digital twin middleware using model-based development[C]// Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control, 2019:1-7. |
[29] | WEISSIG C, SCHREER O, EISERT P, et al. The ultimate immersive experience:Panoramic 3D video acquisition[C]// International Conference on Multimedia Modeling,Berlin,Heidelberg. Springer, 2012:671-681. |
[30] | 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11):1-10. |
LIU Datong, GUO Kai, WANG Benkuan, et al. Digital twin technology review and prospect[J]. Journal of Instruments and Meters, 2018, 39(11):1-10. | |
[31] |
MENG J, LUO G, RICCO M, et al. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5):659-681.
doi: 10.3390/app8050659 |
[32] |
胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16):20-31.
doi: 10.3901/JME.2017.16.020 |
HU Xiaosong, TANG Xiaolin. Review on modeling methods of lithium-ion power battery for electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16):20-31.
doi: 10.3901/JME.2017.16.020 |
|
[33] | CHATURVEDI N A, KLEIN R, CHRISTENSEN J, et al. Algorithms for advanced battery-management systems[J]. IEEE Control Systems Magazine, 2010, 30(3):49-68. |
[34] | 刘鹏, 梁新成, 黄国钧. 锂离子电池模型综述[J]. 电池工业, 2021, 25(2):106-112. |
LIU Peng, LIANG Xincheng, HUANG Guojun. A review of lithium-ion battery models[J]. Battery Industry, 2021, 25(2):106-112. | |
[35] | 方儒卿, 张娜, 李哲. 3类锂离子电池多孔电极模型比较研究及电池正向设计应用[J]. 清华大学学报, 2021, 61(10):1055-1065. |
FANG Ruqing, ZHANG Na, LI Zhe. Comparative study on porous electrode models of three kinds of lithium ion batteries and their application in forward design[J]. Journal of Tsinghua University, 2021, 61(10):1055-1065. | |
[36] | NEWMAN J, THOMAS K E, HAFEZI H, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, 119:838-843. |
[37] | 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比[J]. 物理学报, 2021, 70(13):429-440. |
LI Tao, CHENG Ximing, HU Chenhua. Performance comparison of electrochemical order reduction models for lithium-ion batteries[J]. Acta Physica Sinica, 2021, 70(13):429-440. | |
[38] |
ZHANG D, POPOV B N, WHITE R E. Modeling lithium intercalation of a single spinel particle under potentiodynamic control[J]. Journal of the Electrochemical Society, 2000, 147(3):831-838.
doi: 10.1149/1.1393279 |
[39] |
ROMERO-BECERRIL A, ALVAREZ-ICAZA L. Comparison of discretization methods applied to the single-particle model of lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(23):10267-10279.
doi: 10.1016/j.jpowsour.2011.06.091 |
[40] |
SMITH K A, RAHN C D, WANG C Y. Control oriented 1D electrochemical model of lithium-ion battery[J]. Energy Conversion and Management, 2007, 48(9):2565-2578.
doi: 10.1016/j.enconman.2007.03.015 |
[41] | MELCHER A, ZIEBERT C, LEI B, et al. Modeling and simulation of thermal runaway in cylindrical 18650 lithium-ion batteries[C]// The Proceedings of the 2016 COMSOL Conference, 2016. |
[42] |
BARCELLONA S, PIEGARI L. Lithium-ion battery models and parameter identification techniques[J]. Energies, 2017, 10(12):2007-2030.
doi: 10.3390/en10122007 |
[43] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.
doi: 10.1149/1.2113792 |
[44] |
KIM U S, YI J, SHIN C B, et al. Modelling the thermal behaviour of a lithium-ion battery during charge[J]. Journal of Power Sources, 2011, 196(11):5115-5121.
doi: 10.1016/j.jpowsour.2011.01.103 |
[45] |
KIM U S, SHIN C B, KIM C S. Modeling for the scale-up of a lithium-ion polymer battery[J]. Journal of Power Sources, 2009, 189(1):841-846.
doi: 10.1016/j.jpowsour.2008.10.019 |
[46] | 王楠, 李振, 郝添翼, 等. 基于电化学-热耦合模型的储能用锂离子电池的发热状况研究[J]. 太阳能, 2022(5):77-86. |
WANG Nan, LI Zhen, HAO Tianyi, et al. Thermal characteristics of lithium-ion batteries for energy storage based on electrochemical and thermal coupling model[J]. Solar Energy, 2022(5):77-86. | |
[47] |
匡柯, 孙跃东, 任东生, 等. 车用锂离子电池电化学-热耦合高效建模方法[J]. 机械工程学报, 2021, 57(14):10-22.
doi: 10.3901/JME.2021.14.010 |
KUANG Ke, SUN Yuedong, REN Dongsheng, et al. High efficient modeling method of electrochemical-thermal coupling for vehicle lithium-ion battery[J]. Journal of Mechanical Engineering, 2021, 57(14):10-22.
doi: 10.3901/JME.2021.14.010 |
|
[48] |
韦雪晴, 邓海鹏, 周宇, 等. 锂离子电池组的三维电化学-热耦合仿真分析[J/OL]. 储能科学与技术:1-16[2022-11-03]. DOI:10.19799/j.cnki.2095-4239.2022.0411.
doi: 10.19799/j.cnki.2095-4239.2022.0411 |
WEI Xueqing, DENG Haipeng, ZHOU Yu, et al. Three-dimensional electrochemical lithium-ion battery pack-thermal coupling simulation[J/OL]. Energy Storage Science and Technology:1-16[2022-11-03]. DOI:10.19799/j.cnki.2095-4239.2022.0411.
doi: 10.19799/j.cnki.2095-4239.2022.0411 |
|
[49] |
MASTALI M, FOREMAN E, MODJTAHEDI A, et al. Electrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteries[J]. International Journal of Thermal Sciences, 2018, 129:218-230.
doi: 10.1016/j.ijthermalsci.2018.03.004 |
[50] |
TANG Y, JIA M, LI J, et al. Numerical analysis of distribution and evolution of reaction current density in discharge process of lithium-ion power battery[J]. Journal of the Electrochemical Society, 2014, 161(8):E3021.
doi: 10.1149/2.004408jes |
[51] |
WANG X, WANG Y, TAO F, et al. New paradigm of data-driven smart customization through digital twin[J]. Journal of Manufacturing Systems, 2021, 58:270-280.
doi: 10.1016/j.jmsy.2020.07.023 |
[52] | 宁之成, 刘潇翔, 王淑一. 机理与数据融合的航天器控制系统数字孪生建模方法[J]. 空间控制技术与应用, 2022, 48(2):1-7. |
NING Zhicheng, LIU Xiaoxiang, WANG Shuyi. Digital twin modeling method for spacecraft control systems based on mechanism and data fusion[J]. Space Control Technology and Application, 2022, 48(2):1-7. | |
[53] |
LIU J, WANG W, MA F, et al. A data-model-fusion prognostic framework for dynamic system state forecasting[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4):814-823.
doi: 10.1016/j.engappai.2012.02.015 |
[54] | XU Jianxin, HOU Zhongsheng. Notes on data-driven system approaches[J]. Acta Automatica Sinica, 2009, 35(6):668-675. |
[55] | 李少年, 李毅, 魏列江, 等. 基于改进卡尔曼数据融合算法的温室物联网采集系统研究[J]. 传感技术学报, 2022, 35(4):558-564. |
LI Shaonian, LI Yi, WEI Liejiang, et al. Research on greenhouse IOT acquisition system based on improved Kalman data fusion algorithm[J]. Journal of Sensing Technology, 2022, 35(4):558-564. | |
[56] | 杨思. 数据—模型融合驱动的地铁车轮磨耗预测分析[D]. 北京: 北京建筑大学, 2019. |
YANG Si. Prediction and analysis of subway wheel wear driven by data-model fusion[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019. | |
[57] | 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8):1603-1611. |
TAO Fei, CHENG Ying, CHENG Jiangfeng, et al. Theory and technology of information physical fusion in digital twin workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(8):1603-1611. | |
[58] | 赵广辉, 汪玉洁. 一种应用数字孪生技术的水热管理系统[C]// 第22届中国系统仿真技术及其应用学术年会(CCSSTA22nd 2021)论文集, 2021:103-106. |
ZHAO Guanghui, WANG Yujie. An application of digital technology of twin water thermal management system[C]// 22nd Chinese System Simulation Technology and Application of Academic Conference (2021) CCSSTA22nd Proceedings, 2021:103-106. | |
[59] | 沈洁, 项颢, 贾琨. 基于电子工业物联网模型的数字孪生系统及其构建[J]. 电力信息与通信技术, 2019, 17(3):22-27. |
SHEN Jie, XIANG Hao, JIA Kun. Twin system based on digital electronic industrial IOT model and its construction[J]. Electric Power Information and Communication Technology, 2019, 17(3):22-27. | |
[60] | MIGUEL E, IRAOLA U. Module-level modeling approach for a cloud based digital twin platform for Li-ion batteries[C]// 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), October 25-28,2021,Gijon,Spain. IEEE, 2021:1-6. |
[61] | 顾单飞, 宋佩, 丁鹏, 等. 锂电池的单体数字孪生模型建立方法、系统、终端和介质:中国,CN114722625A[P]. 2022-07-08. |
GU Danfei, SONG Pei, DING Peng, et al. Establishment method,system,terminal and medium of single digital twin model of lithium battery:China,CN114722625A[P]. 2022-07-08. | |
[62] | 赵博, 刘世杰, 周兴振, 等. 一种基于数字孪生的车载锂离子电池建模及故障诊断方法:中国,CN114329760A[P]. 2022-04-12. |
ZHAO Bo, LIU Shijie, ZHOU Xingzhen, et al. A modeling and fault diagnosis method for vehicle lithium ion battery based on digital twin:China,CN114329760A[P]. 2022-04-12. | |
[63] | 杨世春, 周思达, 华旸, 等. 一种基于数字孪生的动力电池组管理系统及方法:中国,CN111027165B[P]. 2022-05-03. |
YANG Shichun, ZHOU Sida, HUA Yang, et al. A power battery pack management system and method based on digital twin:China,CN111027165B[P]. 2022-05-03. |
[1] | 周祖德, 姚碧涛, 谭跃刚, 刘明尧, 李天梁, 魏勤. 光纤传感在制造领域应用的分析与思考[J]. 机械工程学报, 2022, 58(8): 3-26. |
[2] | 李彦梅, 刘惠汉, 张朝龙, 罗来劲. 基于双高斯模型的锂电池剩余使用寿命预测方法*[J]. 电气工程学报, 2022, 17(4): 32-40. |
[3] | 刘王泽宇, 李青, 庾甜甜, 熊锦晨, 张洪源, 董明, 任明. 锂离子电池过放电状态的阻抗特性研究*[J]. 电气工程学报, 2022, 17(4): 51-60. |
[4] | 王功全, 孔得朋, 平平, 吕宏鹏. 锂离子电池热失控模型综述*[J]. 电气工程学报, 2022, 17(4): 61-71. |
[5] | 陈银, 肖如, 崔怡琳, 陈明毅. 储能电站锂离子电池火灾早期预警与抑制技术研究综述*[J]. 电气工程学报, 2022, 17(4): 72-87. |
[6] | 徐彬翔, 郑林锋, 黄乙恒, 肖志能, 王新月. 基于改进最小二乘支持向量机的锂离子电池健康状态快速估计方法*[J]. 电气工程学报, 2022, 17(4): 11-19. |
[7] | 刘家豪, 马晴雯. 在浸入式冷却中添加新型翅片的混合电池热管理系统[J]. 电气工程学报, 2022, 17(4): 113-121. |
[8] | 于仲安, 陈可怡, 张军令, 胡泽洲. 动力电池散热技术研究进展*[J]. 电气工程学报, 2022, 17(4): 145-162. |
[9] | 方德宇, 楚潇, 刘涛, 李俊夫. 基于数据-模型驱动的锂离子电池健康状态估计*[J]. 电气工程学报, 2022, 17(4): 20-31. |
[10] | 齐四清, 苏林华, 范新宇, 姜楠, 王鹏飞. 锂离子电池正极材料低温性能衰退机理研究*[J]. 电气工程学报, 2022, 17(3): 19-29. |
[11] | 陈鑫阳, 姚天浩, 王红康. 锂/钠离子电池锡锑合金负极材料改性的研究进展[J]. 电气工程学报, 2022, 17(3): 2-11. |
[12] | 周敬森, 魏金萧, 谢刚文, 冉立, 张友强, 胡嘉渝. 含大规模新能源接入的交直流输电系统数字孪生平台架构设计*[J]. 电气工程学报, 2022, 17(3): 219-226. |
[13] | 徐茂舒, 沈旖, 王晟, 张娥, 李浩秒, 周敏, 王玮, 王康丽, 蒋凯. 先进感知技术在电池状态估计中的应用与启示*[J]. 电气工程学报, 2022, 17(3): 40-57. |
[14] | 党月懋, 张雪纯, 徐楚奕, 江全元. 基于温度变化率曲线的锂离子电池健康状态评估算法*[J]. 电气工程学报, 2022, 17(3): 58-65. |
[15] | 巫春玲, 程琰清, 徐先峰, 孟锦豪, 谢美美. 基于蒙特卡洛和SH-AUKF算法的锂电池SOC估计*[J]. 电气工程学报, 2022, 17(3): 66-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||