电气工程学报 ›› 2022, Vol. 17 ›› Issue (4): 88-102.doi: 10.11985/2022.04.010
• 特邀专栏:电化学储能系统安全管理与运维 • 上一篇 下一篇
收稿日期:
2022-08-31
修回日期:
2022-10-19
出版日期:
2022-12-25
发布日期:
2023-02-03
通讯作者:
于全庆,男,1984年生,博士,副教授。主要研究方向为电源管理及控制,储能系统及载运工具的电动化和智能化。E-mail:qqyu@hit.edu.cn
作者简介:
李维聪,男,1999年生,硕士研究生。主要研究方向为动力电池及复合电源的安全管控。E-mail:22S130328@stu.hit.edu.cn基金资助:
LI Weicong1(), MU Hao2(
), SHEN Henglong3(
), YU Quanqing1(
)
Received:
2022-08-31
Revised:
2022-10-19
Online:
2022-12-25
Published:
2023-02-03
Contact:
YU Quanqing, E-mail:qqyu@hit.edu.cn
摘要:
目前,新能源汽车的动力电池类型以液态锂离子电池为主,而液态锂离子电池内部的电解液存在易泄漏、可燃和易爆问题。固态锂电池因采用锂金属作为负极材料而具备高能量密度,且将可燃易爆的液体电解质替换为不易燃不易爆的固体电解质,在新能源汽车及其他载运工具中具有广阔的应用前景。对包含铅酸电池、镍系电池及目前应用较多的锂离子电池在内的二次化学电池研究现状进行了梳理;重点分析了固态锂电池电极与电解质技术。固态锂电池的电解质种类主要有氧化物、硫化物与聚合物三类,从电解质种类的角度梳理了固态锂电池的相关技术发展水平及产业化进展;最后对各种载运工具的特点进行总结,并对未来固态锂电池在各种载运工具中的应用前景进行了合理分析。
中图分类号:
李维聪, 穆浩, 沈恒龙, 于全庆. 固态锂电池在载运工具中的应用前景分析*[J]. 电气工程学报, 2022, 17(4): 88-102.
LI Weicong, MU Hao, SHEN Henglong, YU Quanqing. Application Prospect Analysis of Solid-state Lithium Battery in Vehicle[J]. Journal of Electrical Engineering, 2022, 17(4): 88-102.
表2
化学电池性能参数"
电池参数 | 铅酸 电池 | 镍镉 电池 | 镍氢 电池 | 液态锂电池 | 固态锂电池 |
---|---|---|---|---|---|
质量能量密度/(W·h/kg) | 40~70 | 40~60 | 60~120 | 120~250 | 300~700 |
体积能量密度/(W·h/L) | 65~80 | 160~180 | 320~350 | 200~400 | 400~ 1 200 |
循环次数 (容量保持80%) | 400~600 | 500~ 1 000 | 500~ 1 800 | 800~ 3 000 | 1 000 |
单体额定 电压/V | 2 | 1.2 | 1.2 | 3.6 | — |
电压工作 范围/V | 1.5~2.4 | 1.0~1.4 | 1.0~1.4 | 2.7~4.2 | — |
安全性 | 较安全 | 较安全 | 较安全 | 安全 | 很安全 |
有害物质 | 铅 | 镉 | 无 | 无 | 无 |
单位成本/[元/(W·h)] | 0.6 | 7.5 | 2.5~5.5 | 0.7~1.8 | 1.9~3.5 |
记忆效应 | 无 | 有 | 无 | 无 | 无 |
每月自放电率(%) | 15~30 | 15~30 | 25~35 | 2~5 | — |
表4
固态锂电池车辆应用实例"
年份 | 企业 | 电解质类型 | 研究进展 |
---|---|---|---|
2011 | 法国 博洛雷 | 聚合物 | 30 kW·h固态聚合物电池, LFP正极锂负极,能量密度110 W·h/kg,为保证电池正常工作温度(60~80 ℃)需要采用加热器 |
2021 | 法国博洛雷&戴姆勒 | 聚合物 | 441 kW·h聚合物固态锂电池,工作温度50~80 ℃,电芯能量密度250 W·h/kg,熔融态电解质导致内部短路而失败 |
2020 | 丰田 | 硫化物 | 两台丰田LQ概念车搭载固态电池 |
2022 | 蔚来汽车 &卫蓝新 能源 | 氧化物 | 预计在2023年将固液混合态锂电池搭载于蔚来ET7车型,能量密度360 W·h/kg |
2021 | 赣锋锂业 &东风 | 氧化物 | 单体能量密度350 W·h/kg,400次循环能力,50辆样车投入使用 |
2022 | 上汽&清陶 | 氧化物 | 预计2023年搭载清陶长续航固态动力电池产品实现1 000 km以上续航 |
表5
国际空间电源应用示例"
年份 | 航天器 | 储能电源类型 | 主要特点 | 年份 | 航天器 | 储能电源类型 | 主要特点 |
---|---|---|---|---|---|---|---|
1961 | 美国子午仪导航卫星 | 放射性同位素热电机(RTG) | 寿命:20~40年 | 2005 | GIOVE-A | 锂离子电池 | AEA公司研制,采用Sony的18650单体,4组蓄电池,60 A·h |
1969 | 美国阿波罗号飞船 | 同位素加热器/锌银电池 | — | 2008 | GIOVE-B | 锂离子电池 | SAFT研制,VES100单体,3P9S组成81 A·h |
1997 | 美国火星探路者探测器 | 锌银电池 | 电压:27 V,容量:40 A·h,比能量:73 W·h/kg | 2007 | NASA“凤凰号” | 锂离子电池 | 2组,每组8串,25 A·h,共50 A·h |
2000 | STRV-1d | 锂离子电池 | 比能量:100 W·h/kg(首次) | 2011 | Pleiades HR-1A | 锂离子电池 | 2组蓄电池组,一组75 A·h,52P8S分四个模块,一个模块13P8S,能量密度107 W·h/kg,工作温度0~40 ℃ |
2001 | PROBA | 锂离子电池 | 每月400次充放电循环,放电深度8%~15%,在轨运行时间最长的锂离子蓄电池组(超过10年) | 2011 | NASA“好奇号” | 锂离子蓄电池和热电池/放射性同位素温差发电器 | — |
2003 | ESA的火星快车项目 | 锂离子电池 | 能量密度115 W·h/kg,电池组能量1 554 W· h,地面 9 280次循环,放电深度5%~67.55% | 2010 | 国际空间站 | 镍氢电池/锂离子电池 | 2020年国际空间站所使用的镍氢电池已全部更换为锂离子蓄电池,但是备用电源仍为镍氢电池组 |
2004 | W3A卫星 | 锂离子电池 | 国际第一颗采用锂离子电池组的高轨道卫星,首次将锂离子蓄电池组应用于GEO卫星,SAFT所研制,单体能量密度:125 W·h/kg,单体并联18 kW·h,单体串联50 V | 2013 | Alphasat(阿尔法)卫星 | 锂离子电池 | SAFT所研制,采用第五代高比能量(153 W·h/kg)锂离子电池单体VES180,6P23S |
[1] |
HUANG Wensheng, FENG Xuning, HAN Xuebing, et al. Questions and answers relating to lithium-ion battery safety issues[J]. Cell Reports Physical Science, 2021, 2(1):100285.
doi: 10.1016/j.xcrp.2020.100285 |
[2] | 肖曦, 田培根, 于璐, 等. 动力电池梯次利用储能系统电热安全研究现状及展望[J]. 电气工程学报, 2022, 17(1):206-224. |
XIAO Xi, TIAN Peigen, YU Lu, et al. Status and prospect of safety studies of cascade power battery energy storage system[J]. Journal of Electrical Engineering, 2022, 17(1):206-224. | |
[3] | 杨瑞鑫, 熊瑞, 孙逢春. 锂离子动力电池外部短路测试平台开发与试验分析[J]. 电气工程学报, 2021, 16(1):103-118. |
YANG Ruixin, XIONG Rui, SUN Fengchun. Experimental platform development and characteristics analysis of external short circuit in lithium-ion batteries[J]. Journal of Electrical Engineering, 2021, 16(1):103-118. | |
[4] |
WANG Qingsong, MAO Binbin, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73:95-131.
doi: 10.1016/j.pecs.2019.03.002 |
[5] |
GUO Yong, WU Shichao, HE Yanbing, et al. Solid-state lithium batteries:Safety and prospects[J]. eScience, 2022, 2(2):138-163.
doi: 10.1016/j.esci.2022.02.008 |
[6] |
SONG Yongbae, KWAK Hiram, CHO Woosuk, et al. Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries[J]. Current Opinion in Solid State and Materials Science, 2022, 26(1):100977.
doi: 10.1016/j.cossms.2021.100977 |
[7] | 张鹏, 赖兴强, 沈俊荣, 等. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3):896-904. |
ZHANG Peng, LAI Xingqiang, SHEN Junrong, et al. Research and industrialization progress of solid-state lithium battery[J]. Energy Storage Science and Technology, 2021, 10(3):896-904. | |
[8] |
BANERJEE A, WANG Xuefeng, FANG Chengcheng, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews, 2020, 120(14):6878-6933.
doi: 10.1021/acs.chemrev.0c00101 pmid: 32603100 |
[9] | 邵勤思, 颜蔚, 李爱军, 等. 铅酸蓄电池的发展、现状及其应用[J]. 自然杂志, 2017, 39(4):258-264. |
SHAO Qinsi, YAN Wei, LI Aijun, et al. Development,present status and applications of lead-acid battery[J]. Chinese Journal of Nature, 2017, 39(4):258-264. | |
[10] | 吴盛军, 徐青山, 袁晓冬, 等. 规模化储能技术在电力系统中的需求与应用分析[J]. 电气工程学报, 2017, 12(8):10-15. |
WU Shengjun, XU Qingshan, YUAN Xiaodong, et al. An analysis of requirements and applications of grid-scale energy storage technology in power system[J]. Journal of Electrical Engineering, 2017, 12(8):10-15. | |
[11] | 张永锋, 俞越, 张宾, 等. 铅酸电池现状及发展[J]. 蓄电池, 2021, 58(1):27-31. |
ZHANG Yongfeng, YU Yue, ZHANG Bin, et al. Overview of the current situation and development of lead-acid battery[J]. Chinese LABAT Man, 2021, 58(1):27-31. | |
[12] | 叶思成. 动车组蓄电池劣化检测及剩余寿命预测[D]. 成都: 西南交通大学, 2018. |
YE Sicheng. Degradation test and remaining useful life prediction of EMUs battery[D]. Chengdu: Southwest Jiaotong University, 2018. | |
[13] | 曹生彪, 皇甫益. 混合动力汽车用镍氢电池的现状及发展分析[J]. 电池, 2016, 46(5):289-291. |
CAO Shengbiao, HUANGFU Yi. Status quo and development analysis of MH/Ni battery for hybrid electric vehicle[J]. Battery Bimonthly, 2016, 46(5):289-291. | |
[14] | 王雨潇, 任慧平, 皇甫益. 镍氢电池在电动汽车上的发展[J]. 包钢科技, 2019, 45(1):95-98. |
WANG Yuxiao, REN Huiping, HUANGFU Yi. Development of nickel-metal hydride batteries in electric vehicles[J]. Science and Technology of Baotou Steel, 2019, 45(1):95-98. | |
[15] | 张博钊, 苟斌, 徐燕璋. 循环使用与储存条件对石墨/ LiCoO2电池寿命的影响分析[J]. 电气工程学报, 2022, 17(2):38-48. |
ZHANG Bozhao, GOU Bin, XU Yanzhang. Effect analysis of recycling and storage conditions on graphite/LiCoO2 battery life[J]. Journal of Electrical Engineering, 2022, 17(2):38-48. | |
[16] | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2):448-478. |
LI Wenjun, XU Hangyu, YANG Qi, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2):448-478. | |
[17] | 聂凯会. 固态锂电池关键材料表界面稳定性研究[D]. 北京: 中国科学院大学, 2021. |
NIE Kaihui. Research on the surface and interface properties of key materials for solid-state lithium batteries[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
[18] | 罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题(Ⅷ)—负极材料[J]. 储能科学与技术, 2014, 3(2):146-163. |
LUO Fei, CHU Geng, HUANG Jie, et al. Fundamental scientific aspects of lithium batteries (Ⅷ):Anode electrode material[J]. Energy Storage Science and Technology, 2014, 3(2):146-163. | |
[19] | 牟苏玮. 高电压钴酸锂正极材料性能优化研究[D]. 成都: 电子科技大学, 2021. |
MOU Suwei. Research on performance optimization of high voltage lithium cobalt oxide cathode material[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
[20] | 中华人民共和国工业和信息化部. 锂离子电池行业规范条件(2021年本)[EB/OL]. [2021-12-10]. https://wap.miit.gov.cn/cms_files/filemanager/1226211233/attach/202112/3386cbfcac5340fcbf02197c47bdb98f.pdf. |
Ministry of Industry and Information Technology of the People’s Republic of China. Lithium-ion battery industry specification conditions (2021 version)[EB/OL]. [2021-12-10]. https://wap.miit.gov.cn/cms_files/filemanager/1226211233/attach/202112/3386cbfcac5340fcbf02197c47bdb98f.pdf. | |
[21] | SU Yuhao. Comparative analysis of lithium iron phosphate battery and ternary lithium battery[J]. Journal of Physics:Conference Series, 2021:2152. |
[22] | 齐四清, 苏林华, 范新宇, 等. 锂离子电池正极材料低温性能衰退机理研究[J]. 电气工程学报, 2022, 17(3):19-29. |
QI Siqing, SU Linhua, FAN Xinyu, et al. Study on the cathode materials’ deterioration mechanism for lithium-ion batteries at low temperature[J]. Journal of Electrical Engineering, 2022, 17(3):19-29. | |
[23] |
LIU Yanhui, NIU Huichang, LI Zhao, et al. Thermal runaway characteristics and failure criticality of massive ternary Li-ion battery piles in low-pressure storage and transport[J]. Process Safety and Environmental Protection, 2021, 155:486-497.
doi: 10.1016/j.psep.2021.09.031 |
[24] | 宋文龙, 罗秋月, 何艺, 等. 2021年我国电池产销情况[J]. 电池工业, 2022, 26(2):85-89. |
SONG Wenlong, LUO Qiuyue, HE Yi, et al. Production and sales of batteries in China in 2021[J]. Chinese Battery Industry, 2022, 26(2):85-89. | |
[25] | 汪帝. 碳纤维表面MOFs衍生钴镍基电极的制备及其超级电容器性能[D]. 无锡: 江南大学, 2021. |
WANG Di. Preparation and supercapacitor performance of MOFs derived cobalt-nickel electrode on carbon fibers[D]. Wuxi: Jiangnan University, 2021. | |
[26] |
SU Shiming, MA Jiabin, ZHAO Liang, et al. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries[J]. Carbon Energy, 2021, 3(6):866-894.
doi: 10.1002/cey2.129 |
[27] |
SUN Xiaolin, NIU Quanhai, SONG Depeng, et al. Constructing an interface compatible Li anode in organic electrolyte for solid-state lithium batteries[J]. Journal of Energy Storage, 2020, 27:101142.
doi: 10.1016/j.est.2019.101142 |
[28] | 李茜, 郁亚娟, 张之琦, 等. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1):77-86. |
LI Qian, YU Yajuan, ZHANG Zhiqi, et al. Advance and patent analysis of solid electrolyte in solid-state lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(1):77-86. | |
[29] |
TUFAIL M K, AHMAD N, YANG L, et al. A panoramic view of Li7P3S11 solid electrolytes synthesis,structural aspects and practical challenges for all-solid-state lithium batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39:16-36.
doi: 10.1016/j.cjche.2021.09.021 |
[30] | 陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1):21-34. |
CHEN Long, CHI Shangsen, DONG Yuan, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1):21-34. | |
[31] | 刘阳. LLZO全固态电池的制备与界面改性[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
LIU Yang. Preparation and interface modification of LLZO solid state battery[D]. Harbin: Harbin Institute of Technology, 2020. | |
[32] |
PAN Hui, CHENG Zhu, HE Ping, et al. A review of solid-state lithium-sulfur battery:Ion transport and polysulfide chemistry[J]. Energy & Fuels, 2020, 34(10):11942-11961.
doi: 10.1021/acs.energyfuels.0c02647 |
[33] | 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题[J]. 物理学报, 2020, 69(22):187-204. |
ZHAO Ning, MU Shuang, GUO Xiangxin. Fundamental physics problems in all solid state batteries[J]. Acta Physica Sinica, 2020, 69(22):187-204. | |
[34] |
WU Jinghua, SHEN Lin, ZHANG Zhihua, et al. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J]. Electrochemical Energy Reviews, 2021, 4:101-135.
doi: 10.1007/s41918-020-00081-4 |
[35] | 张庆. 硫化物固体电解质的制备及其电化学性能的研究[D]. 北京: 中国科学院大学, 2019. |
ZHANG Qing. Preparation of sulfide solid electrolyte and its electrochemical properties[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
[36] | 莫珊珊. 全固态锂离子电池硫化物电解质的制备和性能研究[D]. 天津: 天津大学, 2015. |
MO Shanshan. Research and preparation of sulfide-based solid electrolyte in all-solid-state lithium-ion batteries[D]. Tianjin: Tianjin University, 2015. | |
[37] | 胡江奎, 袁洪, 赵辰孜, 等. 柔性硫化物固态电解质研究进展[J]. 硅酸盐学报, 2022, 50(1):110-120. |
HU Jiangkui, YUAN Hong, ZHAO Chenzi, et al. Research progresses on flexible sulfide solid electrolytes[J]. Journal of the Chinese Ceramic Society, 2022, 50(1):110-120. | |
[38] |
LIU Sijie, ZHOU Le, HAN Jian, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022, 12(25):2270105.
doi: 10.1002/aenm.202270105 |
[39] |
ZHENG Xiaojiao, WU Jiawei, CHEN Jing, et al. 3D flame-retardant skeleton reinforced polymer electrolyte for solid-state dendrite-free lithium metal batteries[J]. Journal of Energy Chemistry, 2022, 71(8):174-181.
doi: 10.1016/j.jechem.2022.03.010 |
[40] | 许然然, 杜伯学, 肖谧. 高压直流电容器电介质研究现状[J]. 电气工程学报, 2018, 13(11):1-10. |
XU Ranran, DU Boxue, XIAO Mi. Research status on solid dielectric material in HVDC capacitor[J]. Journal of Electrical Engineering, 2018, 13(11):1-10. | |
[41] |
HUANG Tao, XIONG Wei, YE Xue, et al. A cerium-doped NASICON chemically coupled poly (vinylidene fluoride-hexafluoropropylene) -based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries[J]. Journal of Energy Chemistry, 2022, 73(10):311-321.
doi: 10.1016/j.jechem.2022.06.030 |
[42] | 周伟东, 黄秋, 谢晓新, 等. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6):1788-1805. |
ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, et al. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6):1788-1805. | |
[43] |
DONG Panpan, ZHANG Xiahui, HAN K S, et al. Deep eutectic solvent-based polymer electrolyte for solid-state lithium metal batteries[J]. Journal of Energy Chemistry, 2022, 70(7):363-372.
doi: 10.1016/j.jechem.2022.02.026 |
[44] |
FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18:1278-1291.
doi: 10.1038/s41563-019-0431-3 pmid: 31427742 |
[45] | 孟楠. 锂空气电池聚合物电解质及其与电极界面稳定性的研究[D]. 北京: 北京科技大学, 2022. |
MENG Nan. Polymer electrolyte for Li-air battery and its stabilization integration with electrodes[D]. Beijing: University of Science and Technology Beijing, 2022. | |
[46] | 李志坚, 邢继文, 杜伯学, 等. 高储能聚合物材料复配体系研究进展[J]. 电气工程学报, 2021, 16(1):134-140. |
LI Zhijian, XING Jiwen, DU Boxue, et al. Progress on high energy storage polymer material composite system[J]. Journal of Electrical Engineering, 2021, 16(1):134-140. | |
[47] | LI Xiaona, LIANG Jianwen, YANG Xiaofei, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13:1429-1461. |
[48] | 李静. 高性能固态电解质的制备及其在全固态电池中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
LI Jing. Research on the preparation and application of high-performance solid-state electrolytes for all-solid-state batteries[D]. Harbin: Harbin Institute of Technology, 2020. | |
[49] |
MA Jun, CHEN Bingbing, WANG Longlong, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. Journal of Power Sources, 2018, 392:94-115.
doi: 10.1016/j.jpowsour.2018.04.055 |
[50] |
LI You, ZHAI Yuxin, XU Shuxin, et al. Using LLTO with vertically aligned and oriented structures to improve the ion conductivity of composite solid-state electrolytes[J]. Materials Today Communications, 2022, 33:104243.
doi: 10.1016/j.mtcomm.2022.104243 |
[51] | 梁成都, 付佳玮, 刘成勇, 等. 硫化物固态电解质及全固态锂二次电池:中国,201910338105.0[P]. 2020-10-30. |
LIANG Chengdu, FU Jiawei, LIU Chengyong, et al. Sulfide solid-state electrolyte and all-solid-state lithium secondary battery:China,201910338105.0[P]. 2020-10-30. | |
[52] | 魏凤, 吴永庆, 周洪, 等. 全固态锂电池关键技术及应用全球知识产权竞争分析[M]. 武汉: 中国科学院武汉文献情报中心标准分析研究中心, 2021. |
WEI Feng, WU Yongqing, ZHOU Hong, et al. Analysis of global intellectual property competition for key technologies and applications of all-solid lithium batteries[M]. Wuhan: Wuhan Library,Chinese Academy of Sciences, 2021. | |
[53] | BLOIS M. SK,solid power plan solid-state batteries[J]. Chemical & Engineering News, 2021, 99(41):16. |
[54] | 伊竟广. 硫化物基固体电解质及界面研究[D]. 北京: 北京科技大学, 2021. |
YI Jingguang. Research on sulfide-based solid electrolyte and interface[D]. Beijing: University of Science and Technology Beijing, 2021. | |
[55] | 赵宇龙, 孙旭东. 固态电池关键制造工艺综述[J]. 汽车工艺师, 2022(7):25-32. |
ZHAO Yulong, SUN Xudong. Overview of key manufacturing processes for solid-state batteries[J]. Auto Manufacuring Engineer, 2022(7):25-32. | |
[56] |
田建鑫, 郭慧娟, 万静, 等. 固态锂电池电极过程的原位研究进展[J]. 化学学报, 2021, 79(10):1197-1213.
doi: 10.6023/A21060255 |
TIAN Jianxin, GUO Huijuan, WAN Jing, et al. In situ/operando advances of electrode processes in solid-state lithium batteries[J]. Acta Chimica Sinica, 2021, 79(10):1197-1213.
doi: 10.6023/A21060255 |
|
[57] | 张卓然. 硫化物固态电解质的设计及其在全固态电池中的应用[D]. 武汉: 华中科技大学, 2019. |
ZHANG Zhuoran. Design and electrochemical properties of sulfur-based solid electrolytes in all-solid-state batteries[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
[58] | 李文文. PEO基聚合物电解质的改性及其全固态锂硫电池界面研究[D]. 北京: 中国科学院大学, 2020. |
LI Wenwen. Research on modification of PEO electrolyte and interface engineering for all-solid lithium-sulfur battery[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
[59] | 姜东升, 程丽丽. 空间航天器电源技术现状及未来发展趋势[J]. 电源技术, 2020, 44(5):785-790. |
JIANG Dongsheng, CHENG Lili. Summary of present and trend for electrical power system of spacecraft[J]. Chinese Journal of Power Sources, 2020, 44(5):785-790. | |
[60] | 宋丹, 吉瑞萍. 空间电源DC-DC变换器的研究[J]. 电气工程学报, 2017, 12(6):14-18. |
SONG Dan, JI Ruiping. Study of DC-DC converter for space power system[J]. Journal of Electrical Engineering, 2017, 12(6):14-18. | |
[61] | 陈琦, 刘治钢, 张晓峰, 等. 航天器电源技术[M]. 北京: 中国空间技术研究院, 2018. |
CHEN Qi, LIU Zhigang, ZHANG Xiaofeng, et al. Spacecraft power system technology[M]. Beijing: China Academy of Space Technology, 2018. | |
[62] | OSHIMA R, SHOJI Y, MAKITA K, et al. Evaluation of GaAs solar cells grown under different conditions via hydride vapor phase epitaxy[J]. Journal of Cystal Growth, 2020, 537:125600. |
[63] | DAVID R, HIROSHI N. Phase II SBIR double layer electrode technology for advanced space power technologies[J]. Meeting Abstracts, 2014, 1(2):214. |
[64] |
WALKER W, ARDEBILI H. Thermo-electrochemical analysis of lithium-ion batteries for space applications using thermal deskto[J]. Journal of Power Sources, 2014, 269:486-497.
doi: 10.1016/j.jpowsour.2014.07.020 |
[65] |
HE Qisong. China’s space power strategy in the new era[J]. Asian Perspective, 2021, 45(4):785-807.
doi: 10.1353/apr.2021.0041 |
[66] | 李卿鹏, 杨琴, 段鑫, 等. 低轨卫星电源系统锂离子电池组主被动混合均衡拓扑[J]. 电源学报, 2022, 20(5):31-41. |
LI Qingpeng, YANG Qin, DUAN Xin, et al. Li-ion battery pack active-passive hybrid equalization topology for low-earth orbit satellite power supply system[J]. Journal of Power Supply, 2022, 20(5):31-41. | |
[67] | BARRETT B M. On the future of air and space power[J]. Air Univeisity Press, 2020, 14(4):3-5. |
[68] | 陈昱, 毛业军, 唐艳丽. 固态锂电池在轨道车辆的应用研究[J]. 电力机车与城轨车辆, 2022, 45(3):126-128. |
CHEN Yu, MAO Yejun, TANG Yanli. Application research of solid-state lithium batteries in rail vehicles[J]. Electric Locomotives & Mass Transit Vehicles, 2022, 45(3):126-128. | |
[69] | 于全虎. 动力锂电池与电力推进船舶发展分析[J]. 交通节能与环保, 2020, 16(2):29-35. |
YU Quanhu. Power lithium batteries and electric propulsion ship development analysis[J]. Transport Energy Conservation & Environmental Protection, 2020, 16(2):29-35. | |
[70] | 严新平, 贺亚鹏, 贺宜, 等. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4):1-9. |
YAN Xinping, HE Yapeng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4):1-9. | |
[71] | 吴志华, 张孝奕, 杜鹏飞, 等. 船舶锂电池舱布置和电气设备配置特点[J]. 船舶设计通讯, 2021(2):78-84. |
WU Zhihua, ZHANG Xiaoyi, DU Pengfei, et al. Arrangement and electrical equipment configuration of ship lithium battery room[J]. Journal of Ship Design, 2021(2):78-84. | |
[72] | 谢松, 巩译泽, 李明浩. 锂离子电池在民用航空领域中应用的进展[J]. 电池, 2020, 50(4):388-392. |
XIE Song, GONG Yize, LI Minghao. Progress in application of Li-ion battery in civil aviation field[J]. Battery Bimonthly, 2020, 50(4):388-392. |
[1] | 王震坡, 王秋诗, 刘鹏, 张照生. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2): 151-168. |
[2] | 山彤欣, 王震坡, 洪吉超, 曲昌辉, 张景涵, 周洋捷, 侯岩凯. 新能源汽车动力电池“机械滥用-热失控”及其安全防控技术综述[J]. 机械工程学报, 2022, 58(14): 252-275. |
[3] | 周洋捷, 王震坡, 洪吉超, 曲昌辉, 山彤欣, 张景涵, 侯岩凯. 新能源汽车动力电池“过充电-热失控”安全防控技术研究综述[J]. 机械工程学报, 2022, 58(10): 112-135. |
[4] | 肖曦, 田培根, 于璐, 吴岩, 慈松, 朱冒煜. 动力电池梯次利用储能系统电热安全研究现状及展望*[J]. 电气工程学报, 2022, 17(1): 206-224. |
[5] | 陈泽宇, 熊瑞, 李世杰, 张渤. 电动载运工具锂离子电池低温极速加热方法研究[J]. 机械工程学报, 2021, 57(4): 113-120. |
[6] | 陈泽宇, 张渤, 熊瑞, 李世杰. 动力电池低温极速自加热系统加热一致性及其影响因素的建模分析[J]. 机械工程学报, 2021, 57(22): 226-236. |
[7] | 熊瑞, 闫良基, 王榘. 功率需求驱动的电动载运装备用动力电池充放电能力预测方法[J]. 机械工程学报, 2021, 57(20): 161-171. |
[8] | 孙振宇, 王震坡, 刘鹏, 张照生, 陈勇, 曲昌辉. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14): 87-104. |
[9] | 高铭琨, 徐海亮, 吴明铂. 基于等效电路模型的动力电池SOC估计方法综述 *[J]. 电气工程学报, 2021, 16(1): 90-102. |
[10] | 熊瑞, 李幸港. 基于双卡尔曼滤波算法的动力电池内部温度估计[J]. 机械工程学报, 2020, 56(14): 146-151. |
[11] | 李杰浩, 王军政, 汪首坤, 高群, 许铀. 电动汽车电接插件接触电阻振动特性的研究[J]. 机械工程学报, 2020, 56(11): 80-88. |
[12] | 陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24): 93-104,116. |
[13] | 王春雨, 崔纳新, 李长龙, 张承慧. 基于电热耦合模型和多参数约束的动力电池峰值功率预测[J]. 机械工程学报, 2019, 55(20): 28-35. |
[14] | 马彦, 陈阳, 张帆, 陈虹. 基于扩展H∞粒子滤波算法的动力电池寿命预测方法[J]. 机械工程学报, 2019, 55(20): 36-43. |
[15] | 熊瑞, 王侃, 郭姗姗. 锂离子动力电池低温复合加热方法[J]. 机械工程学报, 2019, 55(14): 53-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||