[1] |
钟永洁, 纪陵, 李靖霞, 等. 虚拟电厂基础特征内涵与发展现状概述[J]. 综合智慧能源, 2022, 44(6):25-36.
doi: 10.3969/j.issn.2097-0706.2022.06.003
|
|
ZHONG Yongjie, JI Ling, LI Jingxia, et al. Overview on the characteristics,connotation and development status of virtual power plants in China[J]. Integrated Intelligent Energy, 2022, 44(6):25-36.
doi: 10.3969/j.issn.2097-0706.2022.06.003
|
[2] |
ZHANG Jiatong. The concept, project and current status of virtual power plant:A review[C]// Eliwise Academy. Proceedings of the 2021 International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2021). IOP Publishing,2021:12.
|
[3] |
刘沆. 气电耦合虚拟电厂运营优化及风险评价模型研究[D]. 北京: 华北电力大学, 2021.
|
|
LIU Hang. Research on operation optimization and risk assessment model of gas-electricity coupled virtual power plant[D]. Beijing: North China Electric Power University, 2021.
|
[4] |
KONG Xiangyu, WANG Zhengtao, LIU Chao, et al. Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants[J]. Applied Energy, 2023,334:120609.
|
[5] |
RICHTER A, HAUER I, WOLTER M. Algorithms for technical integration of virtual power plants into german system operation[J]. Advances in Science Technology and Engineering Systems Journal, 2018, 3(1):135-147.
doi: 10.25046/astesj
|
[6] |
刘小聪, 谭清坤, 吴潇雨, 等. 国外虚拟电厂成功的启示[J]. 能源, 2023, 169(2):17-19.
|
|
LIU Xiaocong, TAN Qingkun, WU Xiaoyu, et al. Insights from the success of foreign virtual power plants[J]. Energy, 2023, 169(2):17-19.
|
[7] |
王宣元, 刘蓁. 虚拟电厂参与电网调控与市场运营的发展与实践[J]. 电力系统自动化, 2022, 46(18):158-168.
|
|
WANG Xuanyuan, LIU Zhen. Development and practice of virtual power plant participating in power grid regulation and market operation[J]. Automation of Electric Power Systems, 2022, 46(18):158-168.
|
[8] |
吴建军, 王文生. 智慧能源管理平台支撑需求侧变革—以特斯拉智慧能源平台Autobidder建设为例[J]. 中国电力企业管理, 2021, 631(10):29-32.
|
|
WU Jianjun, WANG Wensheng. Smart energy management platform supports demand-side transformation:Take the construction of Tesla’s smart energy platform autobidder as an example[J]. Management of China Electric Power Enterprises, 2021, 631(10):29-32.
|
[9] |
熊威. 基于多主体博弈的分布式电源投资决策与交易策略研究[D]. 北京: 华北电力大学, 2022.
|
|
XIONG Wei. Research on investment decision-making and trading strategy of distributed power generation based on multi-agent game[D]. Beijing: North China Electric Power University, 2021.
|
[10] |
张凯杰, 丁国锋, 闻铭, 等. 虚拟电厂的优化调度技术与市场机制设计综述[J]. 综合智慧能源, 2022, 44(2):60-72.
doi: 10.3969/j.issn.2097-0706.2022.02.009
|
|
ZHANG Kaijie, DING Guofeng, WEN Ming, et al. Review of optimal dispatching technology and market mechanism design for virtual power plants[J]. Integrated Intelligent Energy, 2022, 44(2):60-72.
doi: 10.3969/j.issn.2097-0706.2022.02.009
|
[11] |
SADEGHI G S, MAJID D, AMIRHOSSEIN N, et al. Economic assessment of multi-operator virtual power plants in electricity market:A game theory-based approach[J]. Sustainable Energy Technologies and Assessments, 2022,53:102733.
|
[12] |
彭雪莹, 黄博文, 潘轩, 等. 基于虚拟电厂及负荷聚集商的用户侧储能适应性研究[J]. 电器与能效管理技术, 2020, 595(10):21-26.
|
|
PENG Xueying, HUANG Bowen, PAN Xuan, et al. Research on user-side energy storage adaptability based on virtual power plant and load aggregator[J]. Electrical & Energy Management Technology, 2020, 595(10):21-26.
|
[13] |
CHEN T, ZHANG B, POURBABAK H, et al. Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems[J]. IEEE Transactions on Smart Grid, 2018, 9(4):3563-3572.
doi: 10.1109/TSG.2016.2635025
|
[14] |
胡安华. 安徽省芜湖市:筹建虚拟电厂助推节能降碳[N]. 中国城市报,2021-08-30(A6).
|
|
HU Anhua. Wuhu City, Anhui Province: Preparing to build a virtual power plant to promote energy conservation and carbon reduction[N]. China City Daily,2021-08-30(A6).
|
[15] |
张娟. 上市公司积极布局虚拟电厂千亿级市场或启[N]. 经济参考报,2022-08-30(3).
|
|
ZHANG Juan. Listed companies actively deploy virtual power plants in the 100-billion-level market[N]. Economic Information Daily,2022-08-30(3).
|
[16] |
潘华, 梁作放, 薛强中, 等. 基于分时电价的含风-光-气-储虚拟电厂经济调度[J]. 太阳能学报, 2020, 41(8):115-122.
|
|
PAN Hua, LIANG Zuofang, XUE Qiangzhong, et al. Economic dispatch of wind/pv/gas/storage virtual power plant based on time-of-use power price[J]. Acta Energiae Solaris Sinica, 2020, 41(8):115-122.
|
[17] |
李鹏, 易修文, 齐德康, 等. 一种基于深度学习的供热策略优化方法[J]. 计算机科学, 2022, 49(4):263-268.
doi: 10.11896/jsjkx.210300155
|
|
LI Peng, YI Xiuwen, QI Dekang, et al. Heating strategy optimization method based on deep learning[J]. Computer Science, 2022, 49(4):263-268.
doi: 10.11896/jsjkx.210300155
|
[18] |
汪洋叶, 赵力航, 常伟光, 等. 基于模型预测控制的虚拟电厂储能系统能量协同优化调控方法[J]. 智慧电力, 2021, 49(7):16-22.
|
|
WANG Yangye, ZHAO Lihang, CHANG Weiguang, et al. Model predictive control based energy collaborative optimization control method for energy storage system of virtual power plant[J]. Smart Power, 2021, 49(7):16-22.
|
[19] |
陶仁峰. 电力市场环境下新能源高渗透电网优化运行策略研究[D]. 乌鲁木齐: 新疆大学, 2019.
|
|
TAO Renfeng. Study on optimal operation strategies for grid with high penetration of new energy in electricity market environment[D]. Urumqi: Xinjiang University, 2019.
|
[20] |
LUO Fengzhang, YANG Xin, WEI Wei, et al. Bi-level load peak shifting and valley filling dispatch model of distribution systems with virtual power plants[J]. Frontiers in Energy Research, 2020,8:596817.
|