[1] |
构建基于“大云物移智”等现代信息通信技术的智能运检体系[J]. 电力设备管理, 2019,4:26-27.
|
|
Construction of intelligent operation inspection system based on modern information and communication technologies such as “big cloud and object mobile intelligence”[J]. Electric Power Equipment Management, 2019,4:26-27.
|
[2] |
邱志斌, 阮江军, 黄道春, 等. 高压隔离开关机械故障分析及诊断技术综述[J]. 高压电器, 2015, 51(8):171-179.
|
|
QIU Zhibin, RUAN Jiangjun, HUANG Daochun, et al. Review of mechanical fault analysis and diagnosis technology of high voltage disconnector[J]. High Voltage Apparatus, 2015, 51(8):171-179.
|
[3] |
KIM K, PARLOS A G, BHARADWAJ R M. Sensorless fault diagnosis of induction motors[J]. IEEE Transactions on Industrial Electronics, 2003, 50(5):1038-1051.
doi: 10.1109/TIE.2003.817693
|
[4] |
李少华, 张文涛, 宋亚凯, 等. 基于高压隔离开关振动信号的故障诊断方法分析[J]. 内蒙古电力技术, 2018, 36(1):89-92.
|
|
LI Shaohua, ZHANG Wentao, SONG Yakai, et al. Analysis of fault diagnosis method based on vibration signal of high voltage disconnector[J]. Inner Mongolia Electric Power Technology, 2018, 36(1):89-92.
|
[5] |
ZHAO Lihua, HONG Guo, WANG Zelong, et al. Research on fault vibration signal features of GIS disconnector based on EEMD and kurtosis criterion[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(5):677-686.
doi: 10.1002/tee.v16.5
|
[6] |
王黎明, 何建明. 电动隔离开关机械故障状态监测的设想[J]. 浙江电力, 2006,3:56-59.
|
|
WANG Liming, HE Jianming. Assumption of mechanical fault condition monitoring of electric disconnector[J]. Zhejiang Electric Power, 2006,3:56-59.
|
[7] |
FUJITA A, SEVERINO P, KOJIMA K, et al. Functional clustering of time series gene expression data by Granger causality[J]. BMC Systems Biology, 2012,6:1-12.
|
[8] |
CHAN P K, MAHONEY M V. Modeling multiple time series for anomaly detection[C]// Fifth IEEE International Conference on Data Mining(ICDM’05). IEEE,2005:8.
|
[9] |
AGHABOZORGI S, SHIRKHORSHIDI A S, WAH T Y. Time-series clustering:A decade review[J]. Information Systems, 2015,53:16-38.
|
[10] |
孙志鹏, 孙志龙, 魏建. 基于决策树支持向量机算法的电力变压器故障诊断研究[J]. 电气工程学报, 2019, 14(4):42-45.
|
|
SUN Zhipeng, SUN Zhilong, WEI Jian. Research on fault diagnosis of power transformer based on decision tree support vector machine algorithm[J]. Journal of Electrical Engineering, 2019, 14(4):42-45.
|
[11] |
于聪, 汤凯波, 李哲, 等. 基于BP神经网络与改进DS证据融合的GIS设备局放故障识别[J/OL]. 电气工程学报:1-9[2023-10-21]. http://kns.cnki.net/kcms/detail/10.1289.TM.20230725.1006.006.html.
|
|
YU Cong, TANG Kaibo, LI Zhe, et al. PDS fault identification of GIS equipment based on BP neural network and improved DS evidence fusion[J/OL]. Journal of Electrical Engineering:1-9[2023-10-21]. http://kns.cnki.net/kcms/detail/10.1289.TM.20230725.1006.006.html.
|
[12] |
LEI Huang, XIA Yingcun, QIN Xu. Estimation of semivarying coefficient time series models with ARMA errors[J]. The Annals of Statistics, 2016, 44(4):1618-1660.
|
[13] |
CAI Zongwu, FAN Jianqing, YAO Qiwei. Functional-coefficient regression models for nonlinear time series[J]. Journal of the American Statistical Association, 2000, 95(451):941-956.
doi: 10.1080/01621459.2000.10474284
|
[14] |
YANG Yi, SHEN Hengtao, Ma Zhigang, et al. ℓ2, 1-norm regularized discriminative feature selection for unsupervised learning[C]// IJCAI International Joint Conference on Artificial Intelligence. 2011.
|
[15] |
LI Zechao, YANG Yi, LIU Jing, et al. Unsupervised feature selection using nonnegative spectral analysis[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2012, 26(1):1026-1032.
|
[16] |
钱明杰, 翟承祥. 鲁棒性的无监督特征选择[C]// 人工智能国际联合会议, 2013.
|
|
QIAN Mingjie, ZHAI Chengxiang. Robust unsupervised feature selection[C]// International Joint Conference on Artificial Intelligence, 2013.
|
[17] |
SHI Lei, DU Liang, SHEN Yidong. Robust spectral learning for unsupervised feature selection[C]// In 2014 IEEE International Conference on Data Mining,IEEE,2014: 977-982.
|
[18] |
DU Xinlong, HAJJAR J F, BOND R B, et al. Clustering and selection of hurricane wind records using autoencoder and K-means algorithm[J]. Journal of Structural Engineering, 2023, 149(8):4023096.
doi: 10.1061/JSENDH.STENG-12110
|
[19] |
TJOSTHEIM D, AUESTAD B H. Nonparametric identification of nonlinear time series:Projections[J]. Journal of the American Statistical Association, 1994, 89(428):1398-1409.
|
[20] |
MA Qianli, LI Sen, SHEN Lifeng, et al. End-to-end incomplete time-series modeling from linear memory of latent variables[J]. IEEE Transactions on Cybernetics, 2019, 50(12):4908-4920.
doi: 10.1109/TCYB.6221036
|