[1] |
史云涛, 赵丽平, 林圣, 等. 城市电网中地铁杂散电流分布规律及影响因素分析[J]. 电网技术, 2021, 45(5):1951-1957.
|
|
SHI Yuntao, ZHAO Liping, LIN Sheng, et al. Analysis of metro stray current distribution law and influencing factors in urban power grids[J]. Power System Technology, 2021, 45(5):1951-1957.
|
[2] |
李嘉成. 城市轨道交通杂散电流分布特性及仿真研究[D]. 成都: 西南交通大学, 2017.
|
|
LI Jiacheng. Stray current distribution characteristics and simulation of urban rail transit[D]. Chengdu: Southwest Jiaotong University, 2017.
|
[3] |
姚磊. 地铁牵引供电接触网系统电磁场空间分布研究[J]. 智能城市, 2018, 4(6):70-71.
|
|
YAO Lei. Research on spatial distribution of electromagnetic field in metro traction power supply contact network system[J]. Intelligent City, 2018, 4(6):70-71.
|
[4] |
吴耀权. 地铁牵引供电接触网系统电磁场空间分布特点研究[J]. 中国高新科技, 2018(23):72-74.
|
|
WU Yaoquan. Research on the spatial distribution characteristics of electromagnetic field in metro traction power supply contact network system[J]. China High-Tech, 2018(23):72-74.
|
[5] |
王学武. 地铁牵引供电接触网系统电磁场空间分布研究[J]. 中小企业管理与科技, 2017(9):94-95,98.
|
|
WANG Xuewu. Research on spatial distribution of electromagnetic field in metro traction power supply contact network system[J]. Small and Medium-sized Enterprise Management and Technology, 2017(9):94-95,98.
|
[6] |
冯丽娜. 地铁列车内低频磁场分布特性研究[D]. 南京: 东南大学, 2019.
|
|
FENG Lina. Research on the characteristics of low-frequency magnetic field distribution inside subway trains[D]. Nanjing: Southeast University, 2019.
|
[7] |
孟小超. 钢筋混凝土墙结构对通信信号影响的研究[D]. 郑州: 郑州大学, 2014.
|
|
MENG Xiaochao. Research on the effect of reinforced concrete wall structure on communication signal[D]. Zhengzhou: Zhengzhou University, 2014.
|
[8] |
贾治勇, 边振江, 刘文言, 等. 东北黑土电磁特性与雷达穿地深度研究[J]. 防护工程, 2019, 41(2):38-42.
|
|
JIA Zhiyong, BIAN Zhenjiang, LIU Wenyan, et al. Research on electromagnetic characteristics and radar penetration depth of northeastern black soil[J]. Protection Engineering, 2019, 41(2):38-42.
|
[9] |
LIU G, WANG J, HU S, et al. Study on the electromagnetic coupling relationship between metro and power grid[C]// 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), September 6-10,2020,Beijing,China. IEEE, 2020:1-4.
|
[10] |
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB/T 50065—2011 交流电气装置的接地设计规范[S]. 北京: 中国计划出版社, 2011.
|
|
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 50065—2011 Code for design of ac electrical installations earthing[S]. Beijing: China Planning Press, 2011.
|
[11] |
罗远国, 刘君, 毛钧毅, 等. 轨地过渡电阻对电网地铁杂散电流分布影响分析[J]. 电网与清洁能源, 2021, 37(4):32-40,46.
|
|
LUO Yuanguo, LIU Jun, MAO Junyi, et al. Analysis of the effect of rail-to-ground transition resistance on stray current distribution in grid metro[J]. Power System and Clean Energy, 2021, 37(4):32-40,46.
|
[12] |
CHENG Xinxiang, NI Yanru, YU Kun, et al. Analysis on harmonic characteristic of transformer DC bias caused by metro stray current[J]. Journal of Physics:Conference Series, 2022, 2196(1):146-152.
|
[13] |
刘烨, 傅晨钊, 赵文彬, 等. 直流接地极运行方式调整过程对变压器直流偏磁影响的研究[J]. 高压电器, 2021, 57(12):110-116,124.
|
|
LIU Ye, FU Chenzhao, ZHAO Wenbin, et al. Study on the influence of DC grounding electrode operation mode adjustment process on transformer DC bias magnetization[J]. High Voltage Apparatus, 2021, 57(12):110-116,124.
|
[14] |
倪砚茹, 喻锟, 曾祥君, 等. 地铁杂散电流引起变压器直流偏磁电流的相关性分析[J]. 电力科学与技术学报, 2021, 36(6):136-143.
|
|
NI Yanru, YU Kun, ZENG Xiangjun, et al. Correlation analysis of DC bias currents in transformers caused by stray currents in subways[J]. Journal of Electric Power Science and Technology, 2021, 36(6):136-143.
|
[15] |
李学鹏, 李庆军, 薛峰, 等. 青豫直流工程入地电流对青海地区交流电网直流偏磁的影响[J]. 广东电力, 2021, 34(10):83-88.
|
|
LI Xuepeng, LI Qingjun, XUE Feng, et al. Influence of inlet current of Qingyu DC project on DC bias of AC grid in Qinghai area[J]. Guangdong Electric Power, 2021, 34(10):83-88.
|
[16] |
杨帆. 变压器直流偏磁的抑制措施及电容隔直装置的应用[J]. 光源与照明, 2021(9):98-100.
|
|
YANG Fan. Suppression measures of transformer DC bias and application of capacitive isolation device[J]. Light Source and Lighting, 2021(9):98-100.
|
[17] |
BELOV A V, GVISHIANI A D, GETMANOV V G, et al. Recognition of geomagnetic storm based on neural network model estimates of Dst indices[J]. Journal of Computer and Systems Sciences International, 2022, 61(1):54-64
doi: 10.1134/S106423072201004X
|
[18] |
黄天超, 王泽忠. 地磁暴对直流输电逆变侧换相角及谐波的影响机理分析[J]. 电工技术学报, 2020, 35(16):3377-3384.
|
|
HUANG Tianchao, WANG Zezhong. Mechanism analysis of the effect of geomagnetic storms on phase change angle and harmonics at the inverter side of DC transmission[J]. Transactions of China Electrotechnical Society, 2020, 35(16):3377-3384.
|
[19] |
李新洁, 王冬辉, 刘春明. 地磁暴对电力系统的影响及防治策略[J]. 强激光与粒子束, 2019, 31(7):118-124.
|
|
LI Xinjie, WANG Donghui, LIU Chunming. Impact of geomagnetic storms on power systems and prevention strategies[J]. High Power Laser and Particle Beams, 2019, 31(7):118-124.
|
[20] |
刘教民, 朱溪, 刘洪正, 等. 电力变压器的GIC-Q损耗算法的研究综述[J]. 高电压技术, 2018, 44(7):2284-2291.
|
|
LIU Jiaoming, ZHU Xi, LIU Hongzheng, et al. Research review on GIC-Q loss algorithm for power transformers[J]. High Voltage Engineering, 2018, 44(7):2284-2291.
|
[21] |
国家能源局. DL/T 437—2012高压直流接地极技术导则[S]. 北京: 中国电力出版社, 2012.
|
|
National Energy Administration of the People’s Republic of China. DL/T 437—2012 Technical guide of HVDC earth electrode system[S]. Beijing: China Electric Power Press, 2012.
|