[1] |
武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7):1703-1725.
|
|
WU Longxing, PANG Hui, JIN Jiamin, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1703-1725.
|
[2] |
TIAN Huixin, QIN Pengliang, LI Kun, et al. A review of the state of health for lithium-ion batteries:Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261(1):120813.
doi: 10.1016/j.jclepro.2020.120813
|
[3] |
李哲, 卢兰光, 欧阳明高. 提高安时积分法估算电池SOC精度的方法比较[J]. 清华大学学报, 2010, 50(8):1293-1296,1301.
|
|
LI Zhe, LU Languang, OUYANG Minggao. Comparison of methods for improving SOC estimation accuracy through an ampere-hour integeration approach[J]. Journal of Tsinghua University, 2010, 50(8):1293-1296,1301.
|
[4] |
CHEN Xiaokai, LEI Hao, XIONG Rui, et al. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles[J]. Applied Energy, 2019, 255:113758.
doi: 10.1016/j.apenergy.2019.113758
|
[5] |
DONG Xile, ZHANG Caiping, JIANG Jiuchun. Evaluation of SOC estimation method based on EKF/AEKF under noise interference[J]. Energy Procedia, 2018, 152:520-525.
doi: 10.1016/j.egypro.2018.09.204
|
[6] |
WU Chunling, HU Wenbo, MENG Jinhao, et al. State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment[J]. Energy, 2023, 274:127316.
doi: 10.1016/j.energy.2023.127316
|
[7] |
郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37(16):4029-4037.
|
|
GUO Xiangwei, XING Cheng, SI Yang, et al. RLS adaptive equivalent circuit model of lithium battery under full working condition[J]. Transactions of China Electrotechnical Society, 2022, 37(16):4029-4037.
|
[8] |
DENG Zhongwei, HU Xiaosong, LIN Xianke, et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression[J]. Energy, 2020, 205:118000.
doi: 10.1016/j.energy.2020.118000
|
[9] |
LUO Kai, CHEN Xiang, ZHENG Huiru, et al. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74(11):159-173.
doi: 10.1016/j.jechem.2022.06.049
|
[10] |
JIAO Meng, WANG Dongqing, QIU Jianlong. A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources, 2020, 459:228051.
doi: 10.1016/j.jpowsour.2020.228051
|
[11] |
SHEN Liyuan, LI Jingjing, LIU Jieyan, et al. Temperature adaptive transfer network for cross-domain state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Power Electronics, 2023, 38(3):3857-3869.
doi: 10.1109/TPEL.2022.3220760
|
[12] |
WANG Jia, ZHAO Rui, HUANG Qiuan, et al. High-efficient prediction of state of health for lithium-ion battery based on AC impedance feature tuned with Gaussian process regression[J]. Journal of Power Sources, 2023, 561:232737.
doi: 10.1016/j.jpowsour.2023.232737
|
[13] |
HAN Qiaoni, JIANG Fan, CHENG Ze. The state of health estimation framework for lithium-ion batteries based on health feature extraction and construction of mixed model[J]. Journal of the Electrochemical Society, 2021, 168(7):070509.
doi: 10.1149/1945-7111/ac0e4c
|
[14] |
TSENG K, LIANG Jinwei, CHANG W, et al. Regression models using fully discharged voltage and internal resistance for state of health estimation of lithium-ion batteries[J]. Energies, 2015, 8(4):2889-2907.
doi: 10.3390/en8042889
|
[15] |
LIU Datong, ZHOU Jianbao, LIAO Haitao, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2015, 45(6):915-928.
|
[16] |
LIU Jiazhi, LIU Xintian. An improved method of state of health prediction for lithium batteries considering different temperature[J]. Journal of Energy Storage, 2023, 63:107028.
doi: 10.1016/j.est.2023.107028
|
[17] |
李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19):4106-4119.
|
|
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19):4106-4119.
|
[18] |
王萍, 彭香园, 程泽, 等. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3):362-371,378.
|
|
WANG Ping, PENG Xiangyuan, CHENG Ze, et al. A multi-time scale joint state estimation method for lithium-ion batteries based on data-driven model fusion[J]. Automotive Engineering, 2022, 44(3):362-371,378.
|
[19] |
杨爽, 曾向阳. 基于多尺度稀疏简单循环单元模型的水声目标识别方法[J]. 哈尔滨工程大学学报, 2022, 43(7):958-964.
|
|
YANG Shuang, ZENG Xiangyang. Underwater acoustic target recognition method based on multi-scale sparse simple recurrent unit model[J]. Journal of Harbin Engineering University, 2022, 43(7):958-964.
|
[20] |
GONG Qingrui, WANG Ping, CHENG Ze. A data-driven model framework based on deep learning for estimating the states of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169:030532.
doi: 10.1149/1945-7111/ac5bac
|
[21] |
BIRKL C. Oxford battery degradation dataset 1[Z]. Oxford:University of Oxford, 2017.
|
[22] |
DONG Guangzhong, CHEN Zonghai, WEI Jingwen, et al. Battery health prognosis using Brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8646-8655.
doi: 10.1109/TIE.41
|
[23] |
HONG J, LEE D, JEONG E R, et al. Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning[J]. Applied Energy, 2020, 278:115646.
doi: 10.1016/j.apenergy.2020.115646
|