电气工程学报 ›› 2023, Vol. 18 ›› Issue (2): 201-209.doi: 10.11985/2023.02.020

• 电力系统 • 上一篇    下一篇

扫码分享

含电动汽车的不确定性微电网鲁棒优化调度方法*

邵嗣杨1,2(), 马翔1,2, 袁伟1,2, 张开宇3, 傅晓飞3, 黄晨宏3   

  1. 1.南瑞集团(国网电力科学研究院)有限公司 南京 211106
    2.国电南瑞南京控制系统有限公司 南京 211106
    3.国网上海市电力公司 上海 200122
  • 收稿日期:2022-03-02 修回日期:2022-07-27 出版日期:2023-06-25 发布日期:2023-07-12
  • 作者简介:邵嗣杨,男,1984年生,高级工程师。主要研究方向为配电自动化系统和配电物联网。E-mail:shaosiyang@sgepri.sgcc.com.cn
  • 基金资助:
    国家电网公司总部科技资助项目(52094021000F)

Robust Optimal Dispatching Method for Uncertain Microgrid Including Electric Vehicles

SHAO Siyang1,2(), MA Xiang1,2, YUAN Wei1,2, ZHANG Kaiyu3, FU Xiaofei3, HUANG Chenhong3   

  1. 1. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106
    2. NARI Nanjing Control System Co., Ltd., Nanjing 211106
    3. State Grid Shanghai Municipal Electric Power Company, Shanghai 200122
  • Received:2022-03-02 Revised:2022-07-27 Online:2023-06-25 Published:2023-07-12

摘要:

针对大规模电动汽车接入微电网造成的负荷压力以及用户电动汽车充电的强不确定性,分别建立了电动汽车无序充电和有序充放电两种模型。同时,考虑微电网中新能源发电及负荷需求的间歇不确定性,在日前计划阶段设计了一种基于电动汽车入网的鲁棒优化经济调度方法。模型以微电网最小运行成本为目标,分别在电动汽车无序充电和有序充放电两种模式下,通过列约束生成算法决策出不确定场景集中的最恶劣场景及该场景下的经济最优日前调度方案,并得出日前计划的运行成本。随后在日内调度阶段,利用可再生能源发电和负荷需求的实时数据,在微电网系统不同保守度水平下,针对预测误差对日前计划方案和运行成本进行补偿微调。最终通过算例仿真验证了所提方法的有效性和合理性。

关键词: 微电网, 电动汽车, 无序充电, 有序充放电, 鲁棒优化, 列约束生成

Abstract:

Aiming at the load pressure caused by large-scale electric vehicle access to microgrid and the strong uncertainty of users’ electric vehicle charging, models of disordered charging and ordered charging/discharging of electric vehicles are established. At the same time, considering the uncertainty of new energy generation and load demand in the microgrid, a robust optimal dispatch method based on electric vehicles entering the grid is designed in the planning stage. Taking the minimum operating cost as the goal, the model finds the worst scenarios in the uncertain scenes and the operating cost in the two modes of disordered charging and orderly charging/discharging of electric vehicles. In the intraday dispatch stage, the real-time data of renewable energy generation and load demand are used to compensate and fine-tune the day-ahead planning scheme and operating cost under different conservative levels of the microgrid system for forecast errors. Finally, the validity and rationality of the proposed method are verified by simulation examples.

Key words: Microgrid, electric vehicle, disordered charging, ordered charging and discharging, robust optimization, column constraint generation

中图分类号: