电气工程学报 ›› 2023, Vol. 18 ›› Issue (2): 192-200.doi: 10.11985/2023.02.019

• 电力系统 • 上一篇    下一篇

扫码分享

基于DDPG算法的发电企业报价策略研究

马丽莹(), 魏云冰()   

  1. 上海工程技术大学电子电气工程学院 上海 201620
  • 收稿日期:2022-08-31 修回日期:2022-11-19 出版日期:2023-06-25 发布日期:2023-07-12
  • 作者简介:马丽莹,女,1995年生,硕士研究生。主要研究方向为电力市场中长期交易,电力系统自动化。E-mail:848296323@qq.com
    魏云冰,男,1970年生,博士,教授。主要研究方向为电力市场中长期交易,电力系统自动化。E-mail:wei.yunbing@sues.edu.cn

Research on Bidding Strategy of Power Generation Enterprise Based on DDPG Algorithm

MA Liying(), WEI Yunbing()   

  1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620
  • Received:2022-08-31 Revised:2022-11-19 Online:2023-06-25 Published:2023-07-12

摘要:

随着智能代理算法在解决发电企业代理报价策略问题中的优势不断凸显,国内外相关研究层出不穷。由于我国电力市场发展成熟度不够高,目前多数研究采用的是国外电力市场的交易模式,这不符合我国电力市场交易的实际情况,因此提出一种针对国内电力市场中长期集中竞价交易的报价模型。该报价模型建立在深度确定性策略梯度算法(Deep deterministic policy gradient,DDPG)的基础上,提出兼顾社会总效用最大化和发电企业自身收益的报价策略,建立了以市场环境和发电企业自身情况为参考的状态空间,同时还建立了按照统一边际价格出清的市场出清模型。通过仿真算例验证了该模型的可行性,并与Q-Learning算法的结果进行对比,同时也展现了发电企业自身情况对报价模型的市场出清结果和企业收益的影响。

关键词: 电力市场, 报价策略, 强化学习, DDPG算法

Abstract:

With the advantages of intelligent agent algorithm in solving the problem of agent quotation strategy in power generation enterprises, there are many relevant researches at domestic and abroad. Due to the immaturity of China’s power market, most of the researches are based on the foreign power market transaction mode, which does not accord with the actual situation of China’s power market transaction, so a medium-long term centralized bidding quotation model is put forward for domestic power market. This quotation model is based on deep deterministic policy gradient(DDPG) algorithm, a quotation strategy is proposed considering the maximization of total social utility and the income of power generation enterprises. The state space is established with the market environment and the situation of the power generation enterprise as the reference, and the market clearing model is established according to the unified marginal price. The feasibility of the model is verified by simulation examples, and the results are compared with those of Q-Learning algorithm. At the same time, the influence of the power generation enterprise’s own situation on the market clearing results of the quotation model and the enterprise income is also shown.

Key words: Electricity market, quotation strategy, reinforcement learning, DDPG algorithm

中图分类号: