电气工程学报 ›› 2022, Vol. 17 ›› Issue (4): 61-71.doi: 10.11985/2022.04.008
• 特邀专栏:电化学储能系统安全管理与运维 • 上一篇 下一篇
收稿日期:
2022-08-31
修回日期:
2022-09-30
出版日期:
2022-12-25
发布日期:
2023-02-03
通讯作者:
孔得朋,男,1985年生,教授。主要研究方向为油气资源及新能源利用中的安全问题。E-mail:kongdepeng@upc.edu.cn
作者简介:
王功全,男,1997年生,博士研究生。主要研究方向为锂离子电池热安全。E-mail:b20040013@s.upc.edu.cn
基金资助:
WANG Gongquan1(), KONG Depeng1(
), PING Ping2, LÜ Hongpeng1
Received:
2022-08-31
Revised:
2022-09-30
Online:
2022-12-25
Published:
2023-02-03
Contact:
KONG Depeng, E-mail:kongdepeng@upc.edu.cn
摘要:
锂离子电池具有能量密度高、循环性能好以及绿色环保等优点,在电动汽车以及储能领域得到了广泛的应用。然而,近年来热失控引发的火灾和爆炸事故激增,成为制约锂离子电池大规模应用的桎梏。因此,锂离子电池的热安全问题成为储能领域的研究热点,其中仿真模拟技术凭借其能够降低经济和时间成本的优势,成为研究电池热失控特征和促进锂离子安全应用的重要手段。按照单体电池到电池模组的思路,对锂离子电池热失控建模的国内外研究进展进行了综述。阐明了锂离子电池内部的产热机制和相应的热动力学建模方法,总结了锂离子电池排气以及后续气体燃烧爆炸的模型进展,分析了热阻网络模型和计算流体力学模型在电池组热失控传播行为预测上的应用,最后对锂离子电池热失控建模研究进行了展望。
中图分类号:
王功全, 孔得朋, 平平, 吕宏鹏. 锂离子电池热失控模型综述*[J]. 电气工程学报, 2022, 17(4): 61-71.
WANG Gongquan, KONG Depeng, PING Ping, LÜ Hongpeng. Thermal Runaway Modeling of Lithium-ion Batteries: A Review[J]. Journal of Electrical Engineering, 2022, 17(4): 61-71.
表1
热分解反应的动力学方程及初始条件"
反应 | 反应表达式 | 初始条件 |
---|---|---|
SEI膜分解 | $\frac{\mathrm{d}{{c}_{SEI}}}{\mathrm{d}t}=-{{A}_{SEI}}{{c}_{SEI}}\text{exp}\left( -\frac{E{{a}_{SEI}}}{RT} \right)$ | cSEI,0=0.15 |
负极与电解液反应 | $\frac{\mathrm{d}{{c}_{a}}}{\mathrm{d}t}=-{{A}_{a}}{{c}_{a}}\text{exp}\left( -\frac{E{{a}_{a}}}{RT} \right)\text{exp}\left( -\frac{{{c}_{SEI}}}{{{c}_{SEI,ref}}} \right)$ | ca,0=0.75 |
正极与电解液反应 | $\frac{\mathrm{d}{{\alpha }_{c}}}{\mathrm{d}t}={{A}_{c}}{{\alpha }_{c}}\left( 1-{{\alpha }_{c}} \right)\text{exp}\left( -\frac{E{{a}_{c}}}{RT} \right)$ | 〈c,0=0.04 |
内部短路 | $\frac{\mathrm{dSOC}}{\mathrm{d}t}=-{{T}_{ISC}}{{A}_{ec}}\mathrm{SOC}\text{exp}\left( -\frac{E{{a}_{ec}}}{RT} \right)$ | — |
电解液分解 | $\frac{\mathrm{d}{{c}_{e}}}{\mathrm{d}t}=-{{A}_{e}}{{c}_{e}}\text{exp}\left( -\frac{E{{a}_{e}}}{RT} \right)$ | ce,0=1 |
粘结剂分解 | $\frac{\mathrm{d}{{c}_{PVDF}}}{\mathrm{d}t}=-{{A}_{PVDF}}{{c}_{PVDF}}\text{exp}\left( -\frac{E{{a}_{PVDF}}}{RT} \right)$ | cPVDF,0=1 |
表2
电池内部各材料的反应热动力学参数"
电池 材料 | A/s-1 | Ea/(J/mol) | H/(J/kg) | W/(kg/m3) | |
---|---|---|---|---|---|
SEI膜 | 1.667×1015 | 1.3508×105 | 2.57×105 | 94.7 | |
负极 | 石墨 | 2.5×1013 | 1.35×105 | 1.714×106 | 610.4 |
Li4Ti5O12 | 5.21×1019 | 1.88×105 | 2.568×105 | 610.4 | |
正极 | LiCoO2 | 3.14×105 | 6.667×1013 | 1.396×105 | 1 300 |
LiNi0.8Co0.15Al0.05O2 | 2.18×105 | 7.25×1016 | 1.3×105 | 1 274 | |
Li1.1(Ni1/3Co1/3 Mn1/3)0.9O2 | 7.9×105 | 2.25×1014 | 1.54×105 | 1 293 | |
LiFePO4 | 1.94×105 | 2.0×108 | 1.03×105 | 960 | |
电解液溶剂 | EC : DEC | 1.4×10115 | 1.015×106 | 1.635×105 | 406.9 |
EC : DMC | 1.95×1040 | 3.742×105 | 2.312×105 | 406.9 | |
PC : DEC | 3.92×1071 | 6.333×105 | 3.128×105 | 406.9 | |
PC : DEC | 7.53×1019 | 1.882×105 | 3.209×105 | 406.9 | |
粘结剂 | PVDF | 1.91×1025 | 2.86×105 | 1.5×106 | 81.4 |
[1] |
WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium-ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
doi: 10.1016/j.jpowsour.2012.02.038 |
[2] |
FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267.
doi: 10.1016/j.ensm.2017.05.013 |
[3] |
WANG Q, MAO B, STOLIAROV S I, et al. A review of lithium-ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73:95-131.
doi: 10.1016/j.pecs.2019.03.002 |
[4] |
朱晓庆, 王震坡, WANG Hsim, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14):91-118.
doi: 10.3901/JME.2020.14.091 |
ZHU Xiaoqing, WANG Zhenpo, WANG Hsim, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14):91-118.
doi: 10.3901/JME.2020.14.091 |
|
[5] |
ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries:A review[J]. Journal of Power Sources, 2016, 306:178-192.
doi: 10.1016/j.jpowsour.2015.11.100 |
[6] |
CHIDAMBARANATHAN B, VIJAYARAM M, SURIYA V, et al. A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system[J]. Materials Today: Proceedings, 2020, 31:116-128.
doi: 10.1016/j.matpr.2020.01.256 |
[7] |
KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2):476-489.
doi: 10.1016/j.jpowsour.2007.04.018 |
[8] |
KONG D, WANG G, PING P, et al. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions[J]. Applied Thermal Engineering, 2021, 189:116661.
doi: 10.1016/j.applthermaleng.2021.116661 |
[9] |
ZHANG Y, MEI W, QIN P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192:116928.
doi: 10.1016/j.applthermaleng.2021.116928 |
[10] | LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J]. Journal of The Electrochemical Society, 2015, 162(10):A2163-A2173. |
[11] | COMAN P T, DARCY E C, VEJE C T, et al. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and arrhenius formulations[J]. Journal of The Electrochemical Society, 2017, 164:A587-A593. |
[12] |
PING P, WANG Q, CHUNG Y, et al. Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions[J]. Applied Energy, 2017, 205:1327-1344.
doi: 10.1016/j.apenergy.2017.08.073 |
[13] | 刘小杰, 张英, 刘洋, 等. 锂离子电池热管理系统综述[J]. 电池, 2022, 52(2):208-212. |
LIU Xiaojie, ZHANG Ying, LIU Yang, et al. A review on thermal management system for Li-ion battery[J]. Battery Bimonthly, 2022, 52(2):208-212. | |
[14] |
LIU H, WEI Z, HE W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J]. Energy Conversion and Management, 2017, 150:304-330.
doi: 10.1016/j.enconman.2017.08.016 |
[15] |
NEWMAN J, TIEDEMANN W. Potential and current distribution in electrochemical cells:Interpretation of the half-cell voltage measurements as a function of reference-electrode location[J]. Journal of The Electrochemical Society, 1993, 140(7):1961.
doi: 10.1149/1.2220746 |
[16] |
SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling performance of lithium-ion batteries[J]. Journal of Power Sources, 2006, 156(2):620-628.
doi: 10.1016/j.jpowsour.2005.05.070 |
[17] |
GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell:Thermal behavior[J]. Journal of The Electrochemical Society, 2011, 158(2):A122.
doi: 10.1149/1.3521314 |
[18] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of The Electrochemical Society, 1985, 132(1):5-12.
doi: 10.1149/1.2113792 |
[19] |
GU H. Mathematical analysis of a Zn/NiOOH cell[J]. Journal of The Electrochemical Society, 1983, 130(7):1459-1464.
doi: 10.1149/1.2120009 |
[20] |
KARIMI G, LI X. Thermal management of lithium-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2013, 37(1):13-24.
doi: 10.1002/er.1956 |
[21] |
WANG Q, SUN J, YAO X, et al. Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2006, 153:A329-A333.
doi: 10.1149/1.2139955 |
[22] |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power,lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1):81-100.
doi: 10.1016/S0378-7753(02)00488-3 |
[23] |
MAO B, CHEN H, CUI Z, et al. Failure mechanism of the lithium-ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122:1103-1115.
doi: 10.1016/j.ijheatmasstransfer.2018.02.036 |
[24] |
WANG Q, SUN J, YAO X, et al. Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6):561-569.
doi: 10.1016/j.jlp.2006.02.002 |
[25] |
HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of The Electrochemical Society, 2001, 148(7):A755.
doi: 10.1149/1.1377592 |
[26] |
GUO G, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8):2393-2398.
doi: 10.1016/j.jpowsour.2009.10.090 |
[27] | 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7):743-750,756. |
ZHANG Mingxuan, FENG Xuning, OUYANG Minggao, et al. Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery[J]. Automotive Engineering, 2015, 37(7):743-750,756. | |
[28] |
JHU C Y, WANG Y W, WEN C Y, et al. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2011, 106(1):159-163.
doi: 10.1007/s10973-011-1452-6 |
[29] |
CHEN W C, WANG Y W, SHU C M. Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge[J]. Journal of Power Sources, 2016, 318:200-209.
doi: 10.1016/j.jpowsour.2016.04.001 |
[30] |
REN D, LIU X, FENG X, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228:633-644.
doi: 10.1016/j.apenergy.2018.06.126 |
[31] |
PEREA A, PAOLELLA A, DUBé J, et al. State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells[J]. Journal of Power Sources, 2018, 399:392-397.
doi: 10.1016/j.jpowsour.2018.07.112 |
[32] |
GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes:Impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70):57171-57186.
doi: 10.1039/C5RA05897J |
[33] |
KONG D, WANG G, PING P, et al. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse[J]. eTransportation, 2022, 12:100157.
doi: 10.1016/j.etran.2022.100157 |
[34] |
CHEN J, RUI X, HSU H, et al. Thermal runaway modeling of LiNi0.6Mn0.2Co0.2O2/graphite batteries under different states of charge[J]. Journal of Energy Storage, 2022, 49:104090.
doi: 10.1016/j.est.2022.104090 |
[35] |
WU H, CHEN S, CHEN J, et al. Dimensionless normalized concentration based thermal-electric regression model for the thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2022, 521:230958.
doi: 10.1016/j.jpowsour.2021.230958 |
[36] |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7):3633-3642.
doi: 10.1039/C3RA45748F |
[37] |
LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of aging[J]. Journal of Power Sources, 2018, 373:220-231.
doi: 10.1016/j.jpowsour.2017.10.085 |
[38] |
QIN P, SUN J, WANG Q. A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway[J]. Journal of Power Sources, 2021, 486:229357.
doi: 10.1016/j.jpowsour.2020.229357 |
[39] |
COMAN P T, RAYMAN S, WHITE R E. A lumped model of venting during thermal runaway in a cylindrical lithium cobalt oxide lithium-ion cell[J]. Journal of Power Sources, 2016, 307:56-62.
doi: 10.1016/j.jpowsour.2015.12.088 |
[40] | COMAN P T, MáTéFI-TEMPFLI S, VEJE C T, et al. Modeling vaporization,gas generation and venting in Li-ion battery cells with a dimethyl carbonate electrolyte[J]. Journal of The Electrochemical Society, 2017, 164(9): A1858. |
[41] |
OSTANEK J K, LI W, MUKHERJEE P P, et al. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model[J]. Applied Energy, 2020, 268:114972.
doi: 10.1016/j.apenergy.2020.114972 |
[42] |
QIN P, JIA Z, WU J, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313:118767.
doi: 10.1016/j.apenergy.2022.118767 |
[43] |
LI W, LEóN QUIROGA V, CROMPTON K R, et al. High resolution 3-D simulations of venting in 18650 lithium-ion cells[J]. Frontiers in Energy Research, 2021, 9:788239.
doi: 10.3389/fenrg.2021.788239 |
[44] |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Laminar burning velocity of gases vented from failed Li-ion batteries[J]. Journal of Power Sources, 2021, 506:230141.
doi: 10.1016/j.jpowsour.2021.230141 |
[45] |
MAO B, ZHAO C, CHEN H, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281:116054.
doi: 10.1016/j.apenergy.2020.116054 |
[46] |
KIM J, MALLARAPU A, FINEGAN D P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium-ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489:229496.
doi: 10.1016/j.jpowsour.2021.229496 |
[47] | JOHNSPLASS J, HENRIKSEN M, VAAGSAETHER K, et al. Simulation of burning velocities in gases vented from thermal runaway lithium-ion batteries[C]// Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58),Reykjavik,Iceland,Sep. 25-27, 2017. |
[48] |
VENDRA C M R, SHELKE A V, BUSTON J E H, et al. Numerical and experimental characterisation of high energy density 21700 lithium-ion battery fires[J]. Process Safety and Environmental Protection, 2022, 160:153-165.
doi: 10.1016/j.psep.2022.02.014 |
[49] |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371:1-7.
doi: S0304-3894(19)30251-1 pmid: 30844645 |
[50] |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Simulation of a premixed explosion of gas vented during Li-ion battery failure[J]. Fire Safety Journal, 2021, 126:103478.
doi: 10.1016/j.firesaf.2021.103478 |
[51] | 赵智兴. 预制舱式锂离子电池储能电站气体爆炸特性研究[D]. 郑州: 郑州大学, 2021. |
ZHAO Zhixing. Study on gas explosion characteristics of prefabricated lithium-ion battery energy storage power station[D]. Zhengzhou: Zhengzhou University, 2021. | |
[52] |
ZHAO J, LU S, FU Y, et al. Experimental study on thermal runaway behaviors of 18650 Li-ion battery under enclosed and ventilated conditions[J]. Fire Safety Journal, 2021, 125:103417.
doi: 10.1016/j.firesaf.2021.103417 |
[53] |
JIANG Z Y, QU Z G, ZHANG J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy[J]. Applied Energy, 2020, 268:115007.
doi: 10.1016/j.apenergy.2020.115007 |
[54] |
FENG X, LU L, OUYANG M, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115:194-208.
doi: 10.1016/j.energy.2016.08.094 |
[55] |
CHEN J, REN D, HSU H, et al. Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model[J]. Applied Energy, 2021, 295:117038.
doi: 10.1016/j.apenergy.2021.117038 |
[56] |
JIA Y, UDDIN M, LI Y, et al. Thermal runaway propagation behavior within 18650 lithium-ion battery packs:A modeling study[J]. Journal of Energy Storage, 2020, 31:101668.
doi: 10.1016/j.est.2020.101668 |
[57] |
QI C, ZHU Y, GAO F, et al. Mathematical model for thermal behavior of lithium-ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer, 2018, 124:552-563.
doi: 10.1016/j.ijheatmasstransfer.2018.03.100 |
[58] |
KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2):1105-1112.
doi: 10.1016/j.jpowsour.2009.06.074 |
[59] |
LI Q, YANG C, SANTHANAGOPALAN S, et al. Numerical investigation of thermal runaway mitigation through a passive thermal management system[J]. Journal of Power Sources, 2019, 429:80-88.
doi: 10.1016/j.jpowsour.2019.04.091 |
[60] |
JINDAL P, KUMAR B S, BHATTACHARYA J. Coupled electrochemical-abuse-heat-transfer model to predict thermal runaway propagation and mitigation strategy for an EV battery module[J]. Journal of Energy Storage, 2021, 39:102619.
doi: 10.1016/j.est.2021.102619 |
[1] | 孙瑶, 蔡路, 秦登, 李田, 张继业. 车窗开闭状态对双层列车车厢内火灾烟气特性的影响[J]. 机械工程学报, 2023, 59(4): 232-240. |
[2] | 陈鑫, 王佳宁, 杨立飞, 张冠宸. 6061-T6铝合金薄板剪切试件设计及动态剪切力学特性分析[J]. 机械工程学报, 2023, 59(4): 62-70. |
[3] | 刘新华, 郭斌, 何瑢, 贾璞, 刘小川, 郭亚周, 杨世春. 轻型无人机电池动态冲击性能研究[J]. 机械工程学报, 2023, 59(2): 177-186. |
[4] | 燕润博, 孙立清, 杨瑞鑫, 熊瑞. 锂离子电池外部短路电压行为预测模型评价[J]. 机械工程学报, 2023, 59(2): 199-211. |
[5] | 魏中宝, 钟浩, 何洪文. 基于多物理过程约束的锂离子电池优化充电方法[J]. 机械工程学报, 2023, 59(2): 223-232. |
[6] | 赵梦静, 王勇, 杨树峰, 段卫平, 刘威, 李京社. 电弧等离子体多物理场分布特征[J]. 机械工程学报, 2022, 58(8): 153-159. |
[7] | 陈明, 赵振宙, 孟令玉, 冯俊鑫, 江瑞芳, 玛尔瓦提·黑扎提. 涡流发生器参数化模型风力机叶段表面应用方法研究[J]. 机械工程学报, 2022, 58(8): 258-265. |
[8] | 李彦梅, 刘惠汉, 张朝龙, 罗来劲. 基于双高斯模型的锂电池剩余使用寿命预测方法*[J]. 电气工程学报, 2022, 17(4): 32-40. |
[9] | 刘王泽宇, 李青, 庾甜甜, 熊锦晨, 张洪源, 董明, 任明. 锂离子电池过放电状态的阻抗特性研究*[J]. 电气工程学报, 2022, 17(4): 51-60. |
[10] | 陈银, 肖如, 崔怡琳, 陈明毅. 储能电站锂离子电池火灾早期预警与抑制技术研究综述*[J]. 电气工程学报, 2022, 17(4): 72-87. |
[11] | 张宇鑫, 武建华, 郑林锋, 叶涛. 基于数字孪生的锂离子电池管理系统设计分析*[J]. 电气工程学报, 2022, 17(4): 103-112. |
[12] | 徐彬翔, 郑林锋, 黄乙恒, 肖志能, 王新月. 基于改进最小二乘支持向量机的锂离子电池健康状态快速估计方法*[J]. 电气工程学报, 2022, 17(4): 11-19. |
[13] | 刘家豪, 马晴雯. 在浸入式冷却中添加新型翅片的混合电池热管理系统[J]. 电气工程学报, 2022, 17(4): 113-121. |
[14] | 于仲安, 陈可怡, 张军令, 胡泽洲. 动力电池散热技术研究进展*[J]. 电气工程学报, 2022, 17(4): 145-162. |
[15] | 方德宇, 楚潇, 刘涛, 李俊夫. 基于数据-模型驱动的锂离子电池健康状态估计*[J]. 电气工程学报, 2022, 17(4): 20-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||