[1] |
钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压技术, 2016, 42(4):1047-1060.
|
|
QIAN Zheng, PEI Yan, CAO Lixiao, et al. Review of wind power forecasting method[J]. High Voltage Engineering, 2016, 42(4):1047-1060.
|
[2] |
AHMED A, KHALID M. A review on the selected applications of forecasting models in renewable power systems[J]. Renewable and Sustainable Energy Reviews, 2019(100):9-21.
|
[3] |
YANG Bo, ZHONG Linen, WANG Jingbo, et al. State-of-the-art one-stop handbook on wind forecasting technologies:An overview of classifications,methodologies,and analysis[J]. Journal of Cleaner Production, 2021(283):124628.
|
[4] |
KARINIOTAKIS G N, STAVRAKAKIS G S, NOGARET E F. Wind power forecasting using advanced neural networks models[J]. IEEE Transactions on Energy Conversion, 1996, 11(4):762-767.
doi: 10.1109/60.556376
|
[5] |
王丽婕, 厉虹, 方市彬. 基于人工鱼群优化算法的支持向量机短期风电功率预测模型[J]. 电气工程学报, 2016, 11(10):7-12.
|
|
WANG Lijie, LI Hong, FANG Shibin. A short-term wind electric power prediction model of support vector machine based on artificial fish population optimization algorithm[J]. Journal of Electrical Engineering, 2016, 11(10):7-12.
|
[6] |
MOHANDES M A, HALAWAN T O, REHMAN S, et al. Support vector machines for wind speed prediction[J]. Renewable Energy, 2004, 29(6):939-947.
doi: 10.1016/j.renene.2003.11.009
|
[7] |
FOLEY A M, LEAHY P G, MARVUGLIA A, et al. Current methods and advances in forecasting of wind power generation[J]. Renewable Energy, 2012, 37(1):1-8.
doi: 10.1016/j.renene.2011.05.033
|
[8] |
LOUKA P, GALANIS G, SIEBERT N, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(12):2348-2362.
|
[9] |
INGRID D. 小波十讲[M]. 北京: 国防工业出版社, 2004.
|
|
INGRID D. Ten lectures on wavelets[M]. Beijing: National Defense Industry Press, 2004.
|
[10] |
韩晓娟, 陈跃燕, 张浩, 等. 基于小波包分解的混合储能技术在平抑风电场功率波动中的应用[J]. 中国电机工程学报, 2013, 33(19):8-13.
|
|
HAN Xiaojuan, CHEN Yueyan, ZHANG Hao, et al. Application of hybrid energy storage technology based on wavelet packet decomposition in smoothing the fluctuation of wind power[J]. Proceedings of the CSEE, 2013, 33(19):8-13.
|
[11] |
RUIZ-AGUILAR J J, TURIAS I, GONZALEZ-ENRIQ UE J, et al. A permutation entropy-based EMD-ANN forecasting ensemble approach for wind speed prediction[J]. Neural Computing and Applications, 2021, 33(7):2369-2391.
doi: 10.1007/s00521-020-05141-w
|
[12] |
LIU Hui, TIAN Hongqi, LI Yanfei. Comparison of new hybrid FEEMD-MLP,FEEMD-ANFIS,wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions[J]. Energy Conversion and Management, 2015, 89,1-11.
doi: 10.1016/j.enconman.2014.09.060
|
[13] |
马晓博. 基于小波变换和BP神经网络的短期风电功率预测[J]. 电力科学与技术学报, 2015, 30(2):92-97.
|
|
MA Xiaobo. Short-term wind power prediction based on wavelet analysis and BP neural network[J]. Journal of Electric Power Science and Technology, 2015, 30(2):92-97.
|
[14] |
肖迁, 李文华, 李志刚, 等. 基于改进的小波-BP神经网络的风速和风电功率预测[J]. 电力系统保护与控制, 2014, 42(15):80-86.
|
|
XIAO Qian, LI Wenhua, LI Zhigang, et al. Wind speed and power prediction based on improved wavelet-BP neural network[J]. Power System Protection and Control, 2014, 42(15):80-86.
|
[15] |
叶小岭, 刘波, 邓华, 等. 基于小波分析和PSO优化神经网络的短期风电功率预测[J]. 可再生能源, 2014, 32(10):1486-1492.
|
|
YE Xiaoling, LIU Bo, DENG Hua, et al. Short-term wind power prediction based on wavelet analysis and PSO optimized neural network[J]. Renewable Energy Resources, 2014, 32(10):1486-1492.
|
[16] |
叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21):103-111.
|
|
YE Ruili, GUO Zhizhong, LIU Ruiye, et al. Wind speed and wind power forecasting method based on wavelet packet decomposition and improved Elman neural network[J]. Transactions of China Electrotechnical Society, 2017, 32(21):103-111.
|
[17] |
曹青. 并网型光伏发电短期功率预测与优化配置研究[D]. 合肥:安徽工程大学, 2019.
|
|
CAO Qing. Study on short-term power prediction and optimal configuration of grid-connected photovoltaic power generation[D]. Hefei:Anhui Polytechnic University, 2019.
|
[18] |
杨德全. 基于神经网络的光伏发电系统发电功率预测[D]. 北京:华北电力大学, 2014.
|
|
YANG Dequan. Generation forecasting for photovoltaic system based on artificial neural networks[D]. Beijing:North China Electric Power University, 2014.
|
[19] |
LIU H, TIAN H Q, LI Y F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J]. Energy Conversion & Management, 2015, 100(16):16-22.
|
[20] |
杨茂, 杨宇. 基于小波包与LSSVM的短期光伏输出功率预测研究[J]. 可再生能源, 2019, 37(11):1595-1602.
|
|
YANG Mao, YANG Yu. Short-term photovoltaic output power prediction based on wavelet packet and LSSVM[J]. Renewable Energy Resources, 2019, 37(11):1595-1602.
|
[21] |
JAEGER H. The “Echo State” approach to analyze and training recurrent neural networks[R]. Technical Report 148,GMD-Frauhofer Institute for Autonomous Intelligent Systems, 2001.
|