[1] |
冬雷, 廖晓钟, 王丽婕 . 大型风电场发电功率建模与预测[M]. 北京: 科学出版社, 2014.
|
[2] |
田云飞, 张立涛, 徐昊亮 . 大规模风电并网对电力系统的影响及应对措施[J]. 电气自动化, 2013,35(3):54-56.
|
|
Tian Yunfei, Zhang Litao, Xu Haoliang . Impact of large scale grid-connected wind power on power system and counter measures[J]. Electrical Automation, 2013,35(3):54-56.
|
[3] |
陈翔, 王福军, 刘天琪 , 等. 考虑风电场布局以及风向角的风电功率预测[J]. 电工电能新技术, 2013,32(1):9-12.
|
|
Chen Xiang, Wang Fujun, Liu Tianqi , et al. Wind power prediction considering wind farm layout and wind direction[J]. Advanced Technology of Electrical Engineering and Energy, 2013,32(1):9-12.
|
[4] |
丁志勇 . 基于相似日聚类的支持向量机风电功率预测方法[J]. 电气应用, 2013,32(19):25-28.
|
|
Ding Zhiyong . Wind Power Forecasting method based on similar day clustering of support vector machines[J]. Electrical Application, 2013,32(19):25-28.
|
[5] |
朱锋, 孙辉, 周玮 . 基于相似日聚类的神经网络风速预测[C]. 中国高等学校电力系统及其自动化专业第二十四届学术年会论文集, 2008.
|
|
Zhu Feng, Sun Hui, Zhou Wei . Neural network wind speed forecast based on similar day clustering[C]. Power System and Its Automation Specialty in Chinese Colleges and Universities in the Twenty-fourth Academic Year, 2008.
|
[6] |
王丽婕, 冬雷, 高爽 . 基于多位置NWP与主成分分析的风电功率短期预测[J]. 电工技术学报, 2015,30(5):79-84.
|
|
Wang Lijie, Dong Lei, Gao Shuang . Wind power short-term prediction based on principal component analysis of multiple locations[J]. Journal of Electrical Technology, 2015,30(5):79-84.
|
[7] |
王德民 . 基于遗传算法优化BP神经网络的风电功率预测[J]. 电子设计工程, 2013,21(22):95-98.
|
|
Wang Demin . Wind power prediction based on genetic algorithm for optimization of BP neural network[J]. Electronic Design Engineering, 2013,21(22):95-98.
|
[8] |
徐敏, 袁建洲, 刘四新 , 等. 基于改进粒子群优化算法的短期风电功率预测[J]. 郑州大学学报:工学版, 2012,33(6):32-35.
|
|
Xu Min, Yuan Jianzhou, Liu Sixin , et al. Short term wind power prediction based on improved particle swarm optimization algorithm[J]. Journal of Zhengzhou University: Engineering Edition, 2012,33(6):32-35.
|
[9] |
陈道君, 龚庆武, 金朝意 , 等. 基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测[J]. 电网技术, 2013,37(4):974-980.
|
|
Chen Daojun, Gong Qingwu, Jin Chaoyi , et al. Short term wind power prediction of the support vector regression based on the parameter optimization of the adaptive quantum behaved particle swarm optimization algorithm[J]. Power Grid Technology, 2013,37(4):974-980.
|
[10] |
李盼池, 徐少华 . 支持向量在模式识别中的核函数特性分析[J]. 计算机工程与设计, 2005,26(2):302-304.
|
|
Li Panchi, Xu Shaohua . Support vector machine and kernel function characteristic analysis in pattern recognition[J]. Computer Engineering and Design, 2005,26(2):302-304.
|
[11] |
王骏, 王士同, 邓赵红 . 聚类分析中的若干问题[J]. 控制与决策, 2012,27(3):321-32.
|
|
Wang Jun, Wang Shitong, Deng Zhaohong . Some problems in cluster analysis[J]. Control and Decision Making, 2012,27(3):321-32.
|
[12] |
史峰, 王辉, 郁磊 , 等. Matlab智能算法30个案例分析[M]. 北京: 北京航空航天大学, 2011.
|
[13] |
卢宏建, 高永涛, 卢小娜 , 等. 基于最小二乘支持向量机和人工鱼群算法的预应力锚杆布置间距优化[J]. 北京科技大学学报, 2010,32(1):133-138.
|
|
Lu Hongjian, Gao Yongtao, Lu Xiaona , et al. Range interval optimization of prestressed anchors based on the least squares support vector machine and artificial fish swarm algorithm[J]. Journal of University of Science and Technology Beijing, 2010,32(1):133-138.
|
[14] |
余胜威 . MATLAB优化算法案例分析与应用[M]. 北京: 清华大学出版社, 2014.
|