电气工程学报 ›› 2023, Vol. 18 ›› Issue (4): 378-388.doi: 10.11985/2023.04.040

• 电工理论与新技术 • 上一篇    

扫码分享

多负载回路串联型故障电弧智能诊断及选线方法研究*

刘艳丽1(), 张晓乐1(), 吕正阳1, 徐振豪1, 刘洋2   

  1. 1.辽宁工程技术大学电气与控制工程学院 葫芦岛 125105
    2.国网葫芦岛供电公司兴城市供电分公司 葫芦岛 125100
  • 收稿日期:2022-12-14 修回日期:2023-05-18 出版日期:2023-12-25 发布日期:2024-01-12
  • 通讯作者: 刘艳丽,女,1981年生,副教授,硕士研究生导师。主要研究方向为电接触理论及应用。E-mail:liuyanli19810919@163.com
  • 作者简介:张晓乐,男,1996年生,硕士研究生。主要研究方向为电器基础理论与应用。E-mail:zxl067013@163.com
  • 基金资助:
    *国家自然科学基金(52104160);国家自然科学基金(52077158);辽宁工程技术大学学科创新团队“智能电气装备与控制技术”资助项目。

Research on Intelligent Diagnosis and Route Selection Method of Multi-load Circuit Series Fault Arc

LIU Yanli1(), ZHANG Xiaole1(), LÜ Zhengyang1, XU Zhenhao1, LIU Yang2   

  1. 1. Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105
    2. Xingcheng Power Supply Branch, State Grid Huludao Power Supply Company, Huludao 125100
  • Received:2022-12-14 Revised:2023-05-18 Online:2023-12-25 Published:2024-01-12

摘要:

低压用电系统线路结构复杂,负载形式多样,因线路老化、接触不良等原因发生串联型故障电弧时,现有的故障电弧断路器通常只能对单相单负载回路进行保护,难以检测到下级线路发生的故障。因此,在AC 220 V下搭建了家用多负载回路串联型故障电弧试验平台,开展各支路及干路故障下的故障电弧试验,获得不同工况下发生故障电弧时的干路电流数据,并将其作为样本建立模型样本库来训练建立的一维卷积神经网络。经过大量训练,建立的家用多负载回路串联型故障电弧诊断及选线模型在验证集上的准确率达到了98.6%。随后使用测试集中的连续电流数据对模型的鲁棒性、抗扰性及泛化性进行测试,最后将训练好的模型导入树莓派中进行运行时间测试,结果表明其检测时间满足UL标准的要求,但在投入实际应用前,仍需要对模型做进一步优化使得其更适合在嵌入式系统上运行。

关键词: 串联型故障电弧, 深度学习, 一维卷积神经网络, 故障诊断, 故障选线

Abstract:

The circuit structure of the low-voltage power system is complex, and the load forms are various. When a series arc fault occurs due to line aging, poor contact, etc., the existing arc fault circuit breaker can usually only protect the single-phase single-load circuit, and it is difficult to detect the lower level line failure. Therefore, a household multi-load circuit series arc fault experiment platform is set up under AC 220 V to carry out arc fault experiments under various branch and trunk faults, and obtain the trunk current data when fault arcs occurred under different working conditions, which are used as samples to establish a model sample database to train the established one-dimensional convolutional neural network. After a lot of training, the established household multi-load circuit series arc fault diagnosis and line selection model has an accuracy rate of 98.6% on the validation set. Then, the continuous current data in the test set is used to verify the robustness, immunity and generalization of the model, and finally the trained model is imported into the Raspberry Pi for running time test. The results show that the detection time meets the requirements of the UL standard. However, before it is put into practice, the model still needs to be further optimized to make it more suitable to run on embedded system.

Key words: Series fault arc, deep learning, one-dimensional convolutional neural network, fault diagnosis, fault line selection

中图分类号: