[1] |
LI Shengchun. Location and analysis of abnormal partial discharge of 750 kV GIS equipment[C]// 2021 13th International Conference on Measuring Technology and Mechatronics Automation(ICMTMA),Beihai,China, 2021:83-85.
|
[2] |
REN Ming, ZHOU Jierui, MIAO Jin. Adopting spectral analysis in partial discharge fault diagnosis of GIS with a micro built-in optical sensor[J]. IEEE Transactions on Power Delivery, 2021, 36(2):1237-1240.
doi: 10.1109/TPWRD.2020.3028511
|
[3] |
SALAMA M M A, BARTNIKAS R. Fuzzy logic applied to PD pattern classification[J]. IEEE Transactions on Electrical Insulation, 2000, 7(1):118-123.
|
[4] |
刘宝稳, 汤容川, 马钲洲, 等. 基于S变换D-SVM AlexNet模型的GIS机械故障诊断与试验分析[J]. 高电压技术, 2021, 47(7):2526-2538.
|
|
LIU Baowen, TANG Rongchuan, MA Zhengzhou, et al. GIS mechanical fault diagnosis and test analysis based on S transform D-SVM AlexNet model[J]. High Voltage Engineering, 2021, 47(7):2526-2538.
|
[5] |
吴旭涛, 马云龙, 何宁辉, 等. 基于多源数据融合的GIS机械故障检测技术[J]. 高压电器, 2022, 58(11):191-196,204.
|
|
WU Xutao, MA Yunlong, HE Ninghui, et al. Mechanical fault detection technology of GIS based on multi-source data fusion[J]. High Voltage Engineering, 2022, 58(11):191-196,204.
|
[6] |
王克胜, 赵彦平, 原帅, 等. 基于电场计算及模态分析的220 kV GIS盆式绝缘子裂纹缺陷检测方法研究[J]. 电网与清洁能源, 2021, 37(8):32-38.
|
|
WANG Kesheng, ZHAO Yanping, YUAN Shuai, et al. Thecrack defect detection method of 220 kV GIS basin-type insulators based on electric field calculation and modalanalysis[J]. Power System and Clean Energy, 2021, 37(8):32-38.
|
[7] |
AMBIKAIRAJAH R, PHUNG B T, RAVISHANKAR J, et al. Spectral features for the classification of partial discharge signals from selected insulation defect models[J]. IET Science Measurement Technology, 2013, 7(2):104-111.
doi: 10.1049/smt2.v7.2
|
[8] |
张波. 基于超声波法的GIS局部放电模式识别的研究[D]. 北京: 华北电力大学, 2015.
|
|
ZHANG Bo. Research on partial discharge pattern recogoniton of GIS based on ultrasonic detection[D]. Beijing: North China Electric Power University, 2015.
|
[9] |
GULSKI E, KREUGER F H. Computer-aided recognition of discharge sources[J]. IEEE Transactions on Electrical Insulation, 1992, 27(1):82-92.
doi: 10.1109/14.123443
|
[10] |
WANG Yanxin, YAN Jing, YANG Zhou, et al. Gas-insulated switchgear insulation defect diagnosis via a novel domain adaptive graph convolutional network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-10.
|
[11] |
KOO J Y, JUNG S Y, RYU C H, et al. Identification of insulation defects in gas-insulated switchgear by chaotic analysis of partial discharge[J]. IET Science Measurement Technology, 2010, 4(3):115-124.
doi: 10.1049/iet-smt.2009.0028
|
[12] |
史志侠. 局放测量新标准IEC60270的特点及其对局放测量工作的影响[J]. 高压电器, 2001, 3:29-32.
|
|
SHI Zhixia. Feature of new standard IEC 60270 for partial discharge measurement and its influence on pd measuring activity[J]. High Voltage Apparatus, 2001, 3:29-32.
|
[13] |
袁文海, 刘彪, 徐浩, 等. 基于复合神经网络的GIS局放故障类型识别[J]. 电力科学与技术学报, 2021, 36(4):157-164.
|
|
YUAN Wenhai, LIU Biao, XU Hao, et al. Partial discharge fault type identification of GIS based on composite neural network[J]. Journal of Electric Power Science and Technology, 2021, 36(4):157-164.
|
[14] |
宋辉, 苑龙祥, 郭双权. 基于数据增强和特征注意力机制的灰狼优化算法-优化残差神经网络变压器故障诊断方法[J/OL]. 现代电力:1-9[2023-03-07]. DOI:10.19725/j.cnki.1007-2322.2022.0163.
|
|
SONG Hui, YUAN Longxiang, GUO Shuangquan. GWO-resnet power transformer fault diagnosis method based on data augmentation and feature attention mechanism[J]. Modern Electric Power:1-9[2023-03-07]. DOI:10.19725/j.cnki.1007-2322.2022.0163.
|
[15] |
XU Guangke, LI Xing, CHEN Lingying, et al. Study on filtering and eigenvalue extraction of partial discharge signal of GIS[C]// 2020 Asia Energy and Electrical Engineering Symposium(AEEES),Chengdu,China, 2020:1014-1017.
|
[16] |
王艳新, 闫静, 王建华, 等. 基于域对抗迁移卷积神经网络的小样本GIS绝缘缺陷智能诊断方法[J]. 电工技术学报, 2022, 37(9):2150-2160.
|
|
WANG Yanxin, YAN Jing, WANG Jianhua, et al. Intelligent diagnosis for GIS with small samples using a novel adversarial transfer learning in convolutional neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(9):2150-2160.
|
[17] |
张新伯, 唐炬, 潘成, 等. 用于局部放电模式识别的深度置信网络方法[J]. 电网技术, 2016, 40(10):3272-3278.
|
|
ZHANG Xinbo, TANG Ju, PAN Cheng, et al. Research of partial discharge recognition based on deep belief nets[J]. Power System Technology, 2016, 40(10):3272-3278.
|
[18] |
石宜金, 谭贵生, 赵波, 等. 基于模糊综合评估模型与信息融合的电力变压器状态评估方法[J]. 电力系统保护与控制, 2022, 50(21):167-176.
|
|
SHI Yijin, TAN Guisheng, ZHAO Bo, et al. Condition assessment method for power transformers based on fuzzy comprehensive evaluation and information fusion[J]. Power System Protection and Control, 2022, 50(21):167-176.
|
[19] |
耿伊雯, 芮逸凡, 范路, 等. 基于D-S证据多源信息融合与固态光电倍增-UHF联合检测的GIS局部放电模式识别[J]. 绝缘材料, 2022, 55(11):109-117.
|
|
GENG Yiwen, RUI Yifan, FAN Lu, et al. GIS partial discharge pattern recognition based on D-S evidence multi-source information fusion and solid state photomultiplier-UHF combined detection[J]. Insulating Materials, 2022, 55(11):109-117.
|
[20] |
MASOUD K, MEHRDAD M, HAMED M, et al. A novel application of deep belief networks in learning partial discharge patterns for classifying corona surface and internal discharges[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4):3277-3287.
doi: 10.1109/TIE.41
|
[21] |
LIAO Ruijin, ZHENG Hanbo, GRZYBOWSKI S, et al. An integrated decision-making model for condition assessment of power transformers using fuzzy approach and evidential reasoning[J]. IEEE Transactions on Power Delivery, 2011, 26(2):1111-1118.
doi: 10.1109/TPWRD.2010.2096482
|
[22] |
关昕, 郭俊萍, 王星. 基于改进DS理论的双重模糊信息安全评估[J]. 计算机工程与应用, 2017, 53(2):112-117.
doi: 10.3778/j.issn.1002-8331.1504-0043
|
|
GUAN Xin, GUO Junping, WANG Xing. Double fuzzy information security evaluation algorithm based on improved DS theory[J]. Computer Engineering and Applications, 2017, 53(2):112-117.
doi: 10.3778/j.issn.1002-8331.1504-0043
|
[23] |
高天昊, 曲卫, 董尧尧, 等. 基于改进D-S证据理论的MPAR行为状态识别方法[J]. 电光与控制, 2022, 29(12):1-6.
|
|
GAO Tianhao, QU Wei, DONG Yaoyao, et al. An MPAR behavioral state identification method based on modified D-S evidence theory[J]. Electronics Optics & Control, 2022, 29(12):1-6.
|
[24] |
LIU Yuwei, CHEN Yuqiang, ZHANG Zhenzhen, et al. Multi-information fusion fault diagnosis based on knn and improved evidence theory[J]. Journal of Vibration Engineering & Technologies, 2021, 10(3):841-852.
|