电气工程学报 ›› 2023, Vol. 18 ›› Issue (2): 157-163.doi: 10.11985/2023.02.015

• 电力系统 • 上一篇    下一篇

扫码分享

基于改进隐马尔可夫模型的非侵入式负荷监测*

郭嘉1,2(), 谢景海1,2, 袁敬中1,2, 姜宇1,2, 孙密1,2, 毕忠勤3()   

  1. 1.国网冀北电力有限公司经济技术研究院 北京 100038
    2.北京京研电力工程设计有限公司 北京 100038
    3.上海电力大学计算机科学与技术学院 上海 200090
  • 收稿日期:2021-11-10 修回日期:2022-01-06 出版日期:2023-06-25 发布日期:2023-07-12
  • 通讯作者: 毕忠勤,男,1977年生,博士,教授。主要研究方向为电力大数据分析、人工智能。E-mail:zqbi@shiep.edu.cn
  • 作者简介:郭嘉,男,1989年生,博士。主要研究方向为输电线路电气新技术、电力系统风险评估。E-mail:silenceqin@163.com
  • 基金资助:
    国网冀北经研院技术创新成本类资助项目(B3018F20000J)

Non-intrusive Load Monitoring Based on Improved Hidden Markov Model

GUO Jia1,2(), XIE Jinghai1,2, YUAN Jingzhong1,2, JIANG Yu1,2, SUN Mi1,2, BI Zhongqin3()   

  1. 1. State Grid Jibei Economic Research Institute, Beijing 100038
    2. Beijing Jingyan Electric Power Engineering Design Co., Ltd., Beijing 100038
    3. College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090
  • Received:2021-11-10 Revised:2022-01-06 Online:2023-06-25 Published:2023-07-12

摘要:

细粒度的能源消耗监测是智能电网建设的重要环节之一。非侵入式负荷监测作为一种能源消耗监测方法,能够深入分析用户细粒度的负荷成分,对用户端的电力优化具有非常重大的意义,同时还具有实施快捷、成本低的特点。首先通过放宽模型的假设条件,对隐马尔可夫模型进行改进,然后基于改进的隐马尔可夫模型对家庭电力负荷进行建模,最后用改进的Viterbi算法求解负荷设备的最佳状态转移序列,进而求解出每种设备的所消耗的功率。试验结果显示所提改进算法不仅具有较高的精度,还具备较好的稳定性,同时分解出的功率曲线与实际的功率曲线更加贴合,具有很好的效果。

关键词: 非侵入式负荷监测, 隐马可夫模型, 能源消耗监测, 智能电网

Abstract:

The fine-grained energy consumption monitoring is one of the important links of smart grid construction. As an energy consumption monitoring method, non-intrusive load monitoring can deeply analyze the fine-grained load components of users, which is of great significance to the power optimization of users, and also has the characteristics of fast implementation and low cost. Firstly, the hidden Markov model is improved by relaxing the assumptions of the model, and then the household power load is modeled based on the improved hidden Markov model. Finally, the improved Viterbi algorithm is used to solve the optimal state transition sequence of the load equipment, and then the power consumed by each equipment is calculated. The experimental results show that the proposed improved algorithm not only has high accuracy, but also has good stability. At the same time, the decomposed power curve is more consistent with the actual power curve, and has good effect.

Key words: Non-intrusive load monitoring, hidden Markov model, energy consumption monitoring, smart grid

中图分类号: