电气工程学报 ›› 2022, Vol. 17 ›› Issue (2): 2-18.doi: 10.11985/2022.02.002
所属专题: 特邀专栏:电气化交通中的电能变换与利用新技术
• 特邀专栏:电气化交通中的电能变换与利用新技术 • 上一篇 下一篇
徐贺1(), 包贤哲2, 王连杰2, 李楚杉2(
), 李武华3, 赵梦恋1
收稿日期:
2022-02-15
修回日期:
2022-05-22
出版日期:
2022-06-25
发布日期:
2022-08-08
通讯作者:
李楚杉
E-mail:xuhe0314@zju.edu.cn;chushan@intl.zju.edu.cn
作者简介:
徐贺,男,1991年生,博士研究生。主要研究方向为高功率密度碳化硅高速驱动。E-mail: xuhe0314@zju.edu.cn
XU He1(), BAO Xianzhe2, WANG Lianjie2, LI Chushan2(
), LI Wuhua3, ZHAO Menglian1
Received:
2022-02-15
Revised:
2022-05-22
Online:
2022-06-25
Published:
2022-08-08
Contact:
LI Chushan
E-mail:xuhe0314@zju.edu.cn;chushan@intl.zju.edu.cn
摘要:
随着“双碳目标”的提出与节能减排需求的持续增长,以商用车辆、军用载具为代表的重载车辆也在逐步向电气化迈进。然而,在常规交通工具中广泛使用的锂电池、柴油发电机等普遍存在能量密度低、供电质量差等问题,无法满足新一代重载车辆的长续航、高机动、低噪声需求。微型燃机系统因其多燃料适配、低燃料消耗、低噪声、低排放、低振动等特点得到了广泛关注与快速发展,并在多个民用与军用电气化交通领域成功应用。围绕交通电气化背景,介绍了微型燃机技术在电气化交通的重要地位,并重点对微型燃机中的电能变换拓扑与控制技术进行总结归纳,通过凝练微型燃机中电能变换技术现阶段面临的主要挑战与亟待解决的问题,指出现有面向微型燃机应用的电能变换方案效果和优劣势,并对未来发展方向进行总结与展望。
中图分类号:
徐贺, 包贤哲, 王连杰, 李楚杉, 李武华, 赵梦恋. 电气化交通中的微型燃机及其电能变换技术综述[J]. 电气工程学报, 2022, 17(2): 2-18.
XU He, BAO Xianzhe, WANG Lianjie, LI Chushan, LI Wuhua, ZHAO Menglian. Overview of Micro-gas Turbines in Electrified Transportation and Their Electric Energy Conversion Technology[J]. Journal of Electrical Engineering, 2022, 17(2): 2-18.
表3
国内外高频功率变换器主要厂商"
条目 | Ballard | Bowman | Capstone | Delta | KEB | Danfoss | Oztek | Celeroton |
---|---|---|---|---|---|---|---|---|
国家和地区 | 加拿大 | 英国 | 美国 | 中国台湾 | 德国 | 丹麦 | 美国 | 瑞士 |
变流器拓扑 | 2L | 2L | 2L | 2L | 2L | 2L | 2L/3L | 2L/3L/PAM |
功率器件 | IGBTs | IGBTs | IGBTs | IGBTs | IGBTs | IGBTs | IGBTs | IGBT/ SiC |
开关频率/kHz | 4~8 | 8 | 未知 | 6~9 | 8~16 | 12 | 20 | 20~40 |
最大基波频率/Hz | 未知 | 未知 | 未知 | 600 | 1200 | 600 | 1000 | 未知 |
功率等级/kW | 10~110 | 60, 80 | 未知 | 全范围覆盖 | 50~250 kV·A | 全范围覆盖 | 30~200 kV·A | 20~50 kV·A |
冷却方式 | 水冷 | 强制风冷 | 强制风冷 | 强制风冷 | 水冷 | 强制风冷 | 水冷 | 水冷 |
LC滤波器体积 | 大 | 大 | 大 | 大 | 大 | 大 | 较小 | 较小 |
[1] | HANSSEN J H, RIIKONEN A, NOREN C, et al. Operating experiences from 18 microturbine applications for CHP and industrial purposes[R]. Danish Gas Technology Centre,Report C0404,2004. |
[2] | 左远志, 杨晓西, 丁静. 微型燃气轮机分布式能源系统发展冷思考[J]. 煤气与热力, 2008, 28(6):10-13. |
ZUO Yuanzhi, YANG Xiaoxi, DING Jing. Cold thinking on the development of micro gas turbine distributed energy system[J]. Gas and Heat, 2008, 28(6):10-13. | |
[3] | 陶德安, 段立强, 杨勇平. 微燃机在分布式能量系统中的应用及发展[J]. 现代电力, 2007(5):77-81. |
TAO Dean, DUAN Liqiang, YANG Yongping. Application and development of micro-gas turbine in distributed energy system[J]. Modern Electric Power, 2007(5):77-81. | |
[4] | 杜建一, 王云, 徐建中. 分布式能源系统与微型燃气轮机的发展与应用[J]. 工程热物理学报, 2004(5):786-788. |
DU Jianyi, WANG Yun, XU Jianzhong. Development and application of distributed energy system and micro-turbine[J]. Journal of Engineering Thermophysics, 2004(5):786-788. | |
[5] | 吴越文. 分布式冷热电联供能源系统实时仿真研究[D]. 贵州: 贵州大学, 2018. |
WU Yuewen. Real-time simulation of distributed cogeneration energy system[D]. Guizhou: Guizhou University, 2018. | |
[6] | 岳增合, 杨彦竹, 孙寅聪, 等. 微燃机冷热电联供系统的分析[J]. 河南科学, 2014, 32(11):2328-2331. |
YUE Zenghe, YANG Yanzhu, SUN Yincong, et al. Analysis of micro-gas turbine combined cooling,heating and power system[J]. Henan Science, 2014, 32(11):2328-2331. | |
[7] | 陈强, 韩巍, 张娜, 等. 新型微燃机分布式冷热电联供系统热力性能分析[J]. 工程热物理学报, 2014, 35(7):1253-1259. |
CHEN Qiang, HAN Wei, ZHANG Na, et al. Thermal performance analysis of a new type of micro-gas turbine distributed combined cooling,heating and power system[J]. Journal of Engineering Thermophysics, 2014, 35(7):1253-1259. | |
[8] | 马世喜. 面向海岛应用的微型燃机冷热电联供系统优化控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
MA Shixi. Research on the optimization control of micro gas turbine combined cooling,heating and power system for island application[D]. Harbin: Harbin Institute of Technology, 2014. | |
[9] | 廖仕文. 微型移动式燃机冷热电联供系统热力参数优化研究[D]. 北京: 华北电力大学, 2014. |
LIAO Shiwen. Optimization of thermal parameters of micro-mobile gas turbine combined cooling,heating and power system[D]. Beijing: North China Electric Power University, 2014. | |
[10] | 陶德安, 徐招红, 曾乐平, 等. 微型燃气轮机冷热电联供系统的热力性能研究[J]. 能源工程, 2013(5):64-66. |
TAO Dean, XU Zhaohong, ZENG Leping, et al. Research on thermal performance of micro gas turbine combined cooling,heating and power system[J]. Energy Engineering, 2013(5):64-66. | |
[11] | 杨晚生, 郭开华. 微型燃气轮机冷热电联供系统的热经济性分析[J]. 暖通空调, 2012, 42(1):80-83. |
YANG Wansheng, GUO Kaihua. Thermal economic analysis of micro-gas turbine combined cooling,heating and power system[J]. HVAC, 2012, 42(1):80-83. | |
[12] | 薛利超, 王巍, 黄钟岳, 等. 管式固体氧化物燃料电池与微型燃气轮机复合系统模拟分析[J]. 燃气轮机技术, 2008(1):18-23,53. |
XUE Lichao, WANG Wei, HUANG Zhongyue, et al. Simulation analysis of composite system of tubular solid oxide fuel cell and micro gas turbine[J]. Gas Turbine Technology, 2008(1):18-23,53. | |
[13] | 薛利超. 基于120 kW固体氧化物燃料电池与微型燃机复合系统性能研究[D]. 大连: 大连理工大学, 2008. |
XUE Lichao. Research on performance of composite system based on 120 kW solid oxide fuel cell and micro gas turbine[D]. Dalian: Dalian University of Technology, 2008. | |
[14] | 王巍, 黄钟岳, 王晓放. 微型燃机与燃料电池复合装置的应用[J]. 燃气轮机技术, 2006(1):26-29. |
WANG Wei, HUANG Zhongyue, WANG Xiaofang. Application of micro gas turbine and fuel cell composite device[J]. Gas Turbine Technology, 2006(1):26-29. | |
[15] | 原林, 袁春, 赵钢, 等. 基于微型燃气轮机的混合动力电动汽车技术分析[C]// “技术创新与核心能力建设”重庆汽车工程学会2006年会论文集, 2006:77-80. |
YUAN Lin, YUAN Chun, ZHAO Gang, et al. Technology analysis of hybrid electric vehicle based on micro-turbine[C]// “Technical Innovation and Core Capability Building”Proceedings of the 2006 Annual Meeting of the Chongqing Society of Automotive Engineers, 2006:77-80. | |
[16] | German Aviaiton Research White Paper,(DLR). Zero emission aviation[EB/OL]. [2020-11-01]. https://www.dlr.de/content/en/downloads/publications/brochures/2020white-paper-dlr-bdli-zero-2020-en.pdf?__blob=pu-blication. |
[17] | Honeywell International., Inc. AGT1500 turbine technology[EB/OL]. [2000-05-10]. https://en.wikipedia.org/wiki/Honeywell_AGT1500. |
[18] | The Association for Uncrewed Vehicle Systems International (AUVSI). UAV turbines demonstrates monarch hybrid range extender for electrically powered medium-sized UAS[EB/OL]. [2022-04-10]. https://www.auvsi.org/industry-news/uav-turbines-demonstrates-monarchhybrid-range-extender-electrically-powered-medium. |
[19] | Turbomachinery International Magazine (TMI). Aero microturbine targets power generation applications[EB/OL]. [2022-04-10]. https://www.turbomachinerymag.com/view/uav-turbines-inc-demonstrates-its-microturbine-engine-operating-with-environmentally-friendly-natural- gas. |
[20] | EATON(ETN). Micro gas turbine technology summary,technology research and development for European collaboration[EB/OL]. [2022-04-10]. https://etn.global/wpcontent/uploads/2018/02/MGTTechnology-Summary-final-for-the-website.pdf. |
[21] | US Department of Energy. Combined heat and power technology fact sheet series:Microturbines[EB/OL]. [2022-04-10]. http://www.northwestchptap.org/NwChp Docs/CHP-GasTurbine.pdf. |
[22] | KOLPAKHCHYAN P G, PARSHUKOV V I, SHAIKHIEV A R, et al. High speed generator for gas microturbine installations[J]. International Journal of Applied Engineering Research, 2017, 12(23):13874-13878. |
[23] | Flex Energy. GAS turbines[EB/OL]. [2022-04-10]. https://www.flexenergy.com/turbine-innovations/. |
[24] | ENN Power. ENN Power official website[EB/OL]. [2022-04-10]. https://www.ennpower.com/cmscontent/252.html. |
[25] | 陈志勇. 用于微电网的微型燃气轮机启动/发电一体控制研究[D]. 北京: 华北电力大学, 2021. |
CHEN Zhiyong. Research on integrated control of micro-turbine startup and power generation for microgrid[D]. Beijing: North China Electric Power University, 2021. | |
[26] | ZWYSSIG C, ROUND S D, KOLAR J W. Power electronics interface for a 100 W 500000 rpm gas turbine portable power unit[C]// Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition,2006,APEC’06,March 19-23,2006,Dallas,TX,USA. IEEE, 2006:7. |
[27] | KAMRUZZAMAN M, BARZEGARAN M R, MOHAMMED O A. EMI reduction of PMSM drive through matrix converter controlled with wide-bandgap switches[J]. IEEE Transactions on Magnetics, 2017, 53(6):1-4. |
[28] | 耿加民. 微型燃气轮机控制与电力变换系统研究[D]. 沈阳: 东北大学, 2009. |
GENG Jiamin. Research on micro-turbine control and power conversion system[D]. Shenyang: Northeastern University, 2009. | |
[29] | ROGERS C B, PENG F Z. Back to back Z-source inverter topology for the series hybrid electric bus[C]// 2011 IEEE Energy Conversion Congress and Exposition, 2011: 2353-2357. |
[30] | YU L, WANG J, ZHENG T. Variable speed control of single shaft micro turbine gas generator in micro grids[C]// 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), 2020:694-698. |
[31] | HUANG Y, KONISHI Y, HO W. Series resonant type soft-switching grid-connected single-phase inverter employing discontinuous-resonant control applied to photovoltaic AC module[C]// 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011:989-994. |
[32] | 史方圆. 基于宽禁带器件的高频隔离逆变器研究[D]. 上海: 上海交通大学, 2020. |
SHI Fangyuan. Research on high frequency isolation inverter based on wide bandgap devices[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
[33] | 李杰. 高频高效GaN逆变器研制[D]. 北京: 北京交通大学, 2019. |
LI Jie. Development of high-frequency and high-efficiency GaN inverter[D]. Beijing: Beijing Jiaotong University, 2019. | |
[34] | WU J, WU Y, HE N, et al. Impact of SiC MOSFET on PV inverter[C]// 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018:1853-1860. |
[35] | TOGASHI R, INOUE Y, MORIMOTO S, et al. Performance improvement of ultra-high-speed PMSM drive system based on DTC by using SiC inverter[C]// 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014:356-362. |
[36] | 崔娜, 孙文超, 谭春青, 等. 基于燃气轮机的板翅式换热器特性分析及结构优化[J]. 动力工程学报, 2019, 39(11):884-892. |
CUI Na, SUN Wenchao, TAN Chunqing, et al. Characteristics analysis and structural optimization of plate-fin heat exchanger based on gas turbine[J]. Chinese Journal of Power Engineering, 2019, 39(11):884-892. | |
[37] | 李岩学, 阮应君, 刘青荣, 等. 基于烟气余热驱动喷射制冷的微型燃气轮机进气冷却系统[J]. 热力发电, 2015, 44(9):9-13,25. |
LI Yanxue, RUAN Yingjun, LIU Qingrong, et al. Air intake cooling system for micro gas turbine driven by exhaust heat from flue gas[J]. Thermal Power Generation, 2015, 44(9):9-13,25. | |
[38] | 王翔. 基于铁心材料测试的高速永磁电机铁耗及温升分析[D]. 沈阳: 沈阳工业大学, 2021. |
WANG Xiang. Analysis of iron loss and temperature rise of high-speed permanent magnet motor based on core material testing[D]. Shenyang: Shenyang University of Technology, 2021. | |
[39] | 刘湛. 磁悬浮高速大功率电机热分析及冷却结构优化[D]. 长沙: 湖南大学, 2019. |
LIU Zhan. Thermal analysis and cooling structure optimization of maglev high-speed high-power motor[D]. Changsha: Hunan University, 2019. | |
[40] | 孔晓光. 高速永磁电机定子损耗和温升研究[D]. 沈阳: 沈阳工业大学, 2011. |
KONG Xiaoguang. Research on stator loss and temperature rise of high-speed permanent magnet motor[D]. Shenyang: Shenyang University of Technology, 2011. | |
[41] | 朱成彪, 马宝萍, 祝雪妹. 三相SPWM光伏逆变电路LC滤波器设计与仿真[J]. 南京师范大学学报, 2015, 15(4):1-8. |
ZHU Chengbiao, MA Baoping, ZHU Xuemei. Design and simulation of LC filter for three-phase SPWM photovoltaic inverter circuit[J]. Journal of Nanjing Normal University, 2015, 15(4):1-8. | |
[42] | 翟艳强. 三电平有源电力滤波器的故障诊断与容错控制研究[D]. 青岛: 山东科技大学, 2020. |
ZHAI Yanqiang. Research on fault diagnosis and fault-tolerant control of three-level active power filter[D]. Qingdao: Shandong University of Science and Technology, 2020. | |
[43] | 杨德东, 张化光, 邓玮. 微型燃机控制系统设计中的几个问题[J]. 控制工程, 2006(3):278-281. |
YANG Dedong, ZHANG Huaguang, DENG Wei. Several problems in the design of micro gas turbine control system[J]. Control Engineering of China, 2006(3):278-281. | |
[44] | 占文涛, 何礼高. 基于双向PWM变换器的微燃机发电系统起动/发电控制研究[J]. 通信电源技术, 2009, 26(1):20-23. |
ZHAN Wentao, HE Ligao. Research on starting/ generating control of micro-gas turbine power generation system based on bidirectional PWM converter[J]. Communication Power Technology, 2009, 26(1):20-23. | |
[45] | 李艳明, 郭宏, 谢清明, 等. 微燃机用高速永磁同步起动发电机驱动控制策略研究[J]. 电气传动, 2013, 43(4):17-21. |
LI Yanming, GUO Hong, XIE Qingming, et al. Research on drive control strategy of high-speed permanent magnet synchronous starter-generator for micro-gas turbines[J]. Electric Drive, 2013, 43(4):17-21. | |
[46] | 闫士杰, 耿加民, 张化光, 等. SVPWM快速算法在微型燃机软启动中的应用[J]. 控制工程, 2008(1):88-90. |
YAN Shijie, GENG Jiamin, ZHANG Huaguang, et al. Application of SVPWM fast algorithm in soft start of micro gas turbine[J]. Control Engineering of China, 2008(1):88-90. | |
[47] | 王帅, 段建东, 孙力, 等. 基于超级电容储能的微型燃气轮机发电系统功率平衡控制[J]. 电力自动化设备, 2017, 37(2):126-133. |
WANG Shuai, DUAN Jiandong, SUN Li, et al. Power balance control of micro gas turbine power generation system based on supercapacitor energy storage[J]. Electric Power Automation Equipment, 2017, 37(2):126-133. | |
[48] | ZHAN Y, CAI Z, CHEN Z, et al. Control strategy for start-up process of micro gas turbine generation systems[C]// 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019:1-4. |
[49] | 闫士杰, 于革. 微型燃机电力变换SVPWM过调制策略的实现[J]. 控制工程, 2006(5):502-505. |
YAN Shijie, YU Ge. Realization of SVPWM overmodulation strategy for power conversion of micro gas turbine[J]. Control Engineering of China, 2006(5):502-505. | |
[50] | LI J J. Modeling and simulation of micro gas turbine generation system for grid connected operation[C]// 2010 Asia-Pacific Power and Energy Engineering Conference, 2010:1-4. |
[51] | 邓玮, 张化光, 杨德东. 微型燃气轮机控制及电力变换系统的研制[J]. 控制工程, 2006(1):35-38. |
DENG Wei, ZHANG Huaguang, YANG Dedong. Development of micro gas turbine control and power conversion system[J]. Control Engineering of China, 2006(1):35-38. | |
[52] | 曲娜. 参数自整定模糊PID微型燃机转速控制系统的设计[C]// 2006北京地区高校研究生学术交流会——通信与信息技术会议论文集(下), 2006:254-259. |
QU Na. Design of parameter self-tuning fuzzy PID micro-gas turbine speed control system[C]// 2006 Beijing Area Postgraduate Academic Exchange Conference - Communication and Information Technology Conference Proceedings (Part II), 2006:254-259. | |
[53] | 闫大朋, 闫士杰, 李爱平, 等. 微型燃气轮机的新型神经网络控制的研究[J]. 控制工程, 2008(5):541-543,548. |
YAN Dapeng, YAN Shijie, LI Aiping, et al. Research on novel neural network control of micro gas turbines[J]. Control Engineering of China, 2008(5):541-543,548. | |
[54] | 张春有, 张化光, 王晓暄, 等. 一种基于BP神经网络的解耦控制方法及其在微型燃机控制中应用的研究[J]. 信息与控制, 2005(2):214-218. |
ZHANG Chunyou, ZHANG Huaguang, WANG Xiaoxuan, et al. Research on a decoupling control method based on bp neural network and its application in micro gas turbine control[J]. Information and Control, 2005(2):214-218. | |
[55] | 马草原, 朱信尚, 韩永刚, 等. 基于PSO的自适应广义预测微燃机控制[J]. 控制工程, 2019, 26(2):179-184. |
MA Caoyuan, ZHU Xinshang, HAN Yonggang, et al. Adaptive generalized predictive micro-gas turbine control based on PSO[J]. Control Engineering of China, 2019, 26(2):179-184. | |
[56] | 张宏伟, 陈洁, 孙明, 等. 微型燃气轮机可变论域自适应模糊PID控制[J]. 热能动力工程, 2018, 33(1):42-47. |
ZHANG Hongwei, CHEN Jie, SUN Ming, et al. Variable universe of micro-turbine adaptive fuzzy PID control[J]. Thermal Power Engineering, 2018, 33(1):42-47. | |
[57] | CAMERETTI M C, COSTANZO F Di, MASE G di, et al. An optimal control strategy for high-speed micro gas turbine permanent-magnet synchronous generator[C]// 2018 International Symposium on Power Electronics,Electrical Drives,Automation and Motion (SPEEDAM), 2018:324-329. |
[58] | 王静, 崔国民, 张勤, 等. 微型燃气轮机的控制研究[J]. 机电设备, 2004(4):1-6. |
WANG Jing, CUI Guomin, ZHANG Qin, et al. Research on control of micro gas turbines[J]. Electromechanical Equipment, 2004(4):1-6. | |
[59] | 段建东, 孙力, 赵克, 等. 一种微型燃气轮机抗扰控制器设计及验证方法[J]. 电机与控制学报, 2012, 16(6):19-24. |
DUAN Jiandong, SUN Li, ZHAO Ke, et al. A design and verification method of a micro-turbine anti-disturbance controller[J]. Journal of Electric Machinery and Control, 2012, 16(6):19-24. | |
[60] | 邓玮, 朱小娟, 赵琰. 发电用微型燃气轮机转速直接模糊H∞控制[J]. 东北电力技术, 2009, 30(4):7-9. |
DENG Wei, ZHU Xiaojuan, ZHAO Yan. Direct fuzzy H∞ control of speed of micro-gas turbine for power generation[J]. Northeast Electric Power Technology, 2009, 30(4):7-9. |
[1] | 李超, 谢振宇, 吴传响, 王一建. 磁悬浮轴承非定向差动控制方式研究[J]. 机械工程学报, 2022, 58(21): 161-170. |
[2] | 赵红星, 王国庆, 宋建岭, 刘宪力, 周政, 杨春利. 氦弧与氩弧电弧特性对比研究[J]. 机械工程学报, 2018, 54(8): 137-143. |
[3] | 冯海生, 王黎钦, 彭波, 赵小力, 郑德志. 高速大功率密度齿轮传动系统的干摩擦阻尼环减振特性研究[J]. 机械工程学报, 2017, 53(21): 37-45. |
[4] | 唐爱坤;潘剑锋;薛宏;杨文明;李晓春;段炼. MTPV系统中热光电能量转换的数值分析[J]. , 2010, 46(20): 134-138. |
[5] | 陈林要;郑军林;孙丰瑞. 恒温热源实际布雷顿循环的功率密度优化[J]. , 2002, 38(2): 86-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||