电气工程学报 ›› 2021, Vol. 16 ›› Issue (3): 85-91.doi: 10.11985/2021.03.012

• 电力系统 • 上一篇    下一篇

扫码分享

考虑含热电联产机组及可再生能源优先消纳的风-光-水-火联合优化调度

林琳1(), 高雪1, 甄钊2   

  1. 1.保定电力职业技术学院(国网冀北电力有限公司技能培训中心) 保定 071051
    2.华北电力大学(保定)电力工程系 保定 071003
  • 收稿日期:2020-09-13 修回日期:2021-03-01 出版日期:2021-09-25 发布日期:2021-10-29
  • 作者简介:林琳,女,1988年生,硕士。主要研究方向为电力负荷预测。E-mail: 844561731@qq.com

Optimal Dispatch of Wind-photovoltaic-hydro-thermal Power System Based on CHP Units and Priority Given to Renewable Energy

LIN Lin1(), GAO Xue1, ZHEN Zhao2   

  1. 1. Baoding Electric Power Vocational and Technical College(State Grid Jibei Electric Power Company Limited Skills Training Center), Baoding 071051
    2. Department of Electrical Engineering, North China Electric Power University, Baoding 071003
  • Received:2020-09-13 Revised:2021-03-01 Online:2021-09-25 Published:2021-10-29

摘要:

随着能源结构的改善,可再生能源大规模并网,有效协调各能源之间的稳定运行已成为电力系统调度所面临的新难题。考虑风、光、水、火多能源互补发电,优先消纳可再生能源,联系北方供暖的实际问题,在模型中加入热电联产机组,构建含有热电联产机组及可再生能源优先消纳的风光水火联合优化调度模型。采用基于自然选择机理的粒子群优化算法求解该模型,避免算法陷入局部最优解。通过北方某地区夏、冬季典型电负荷及热负荷作为算例进行仿真分析,验证了所构建模型及算法的可行性。

关键词: 互补发电, 可再生能源, 热电联产机组, 粒子群优化算法

Abstract:

With the improvement of the energy structure, large-scale integration of renewable energy into the grid, and effective coordination of the stable operation of various energy sources has become a new problem faced by power system dispatching. Considering the complementary power generation of wind, solar, water, and fire, giving priority to the consumption of renewable energy, meanwhile connecting with the actual problems of heating in the north, the cogeneration units are added to build a wind, solar, water and fire joint optimization scheduling model that contains cogeneration units and priority consumption of renewable energy. The particle swarm optimization algorithm based on natural selection mechanism is used to solve the model to avoid the algorithm falling into the local optimal solution. Through simulation analysis of typical summer and winter electrical load and thermal load in a certain area in the north, the feasibility of the constructed model and algorithm is verified.

Key words: Complementary power generation, renewable energy, CHP units, particle swarm optimization algorithm

中图分类号: