[1] |
NI H, FANG S, LIN H. A simplified phase-controlled switching strategy for inrush current reduction[J]. IEEE Transactions on Power Delivery, 2021, 36(1):215-222.
doi: 10.1109/TPWRD.61
|
[2] |
SAMET H, SHADAEI M, TAJDINIAN M, et al. Statistical discrimination index founded on rate of change of phase angle for immunization of transformer differential protection against inrush current[J]. International Journal of Electrical Power & Energy Systems, 2022,134:107381.
|
[3] |
黄景光, 罗亭然, 林湘宁, 等. 励磁涌流波形密度系数鉴别算法[J]. 电力系统及其自动化学报, 2017, 29(7):34-40.
|
|
HUANG Jingguang, LUO Tingran, LIN Xiangning, et al. Identification algorithm for magnetizing inrush current in terms of waveform density coefificient[J]. Proceedings of the CSU-EPSA, 2017, 29(7):34-40.
|
[4] |
WU J. Fuzzy recognition method and simulation analysis on second harmonic excitation inrush current of transformer[J]. Applied Mechanics & Materials, 2014,484-485:1076-1080.
|
[5] |
张双梓, 王铮, 孙世勇, 等. 变压器差动保护二次谐波制动方案分析与改进[J]. 电测与仪表, 2014, 51(23):123-128.
|
|
ZHANG Shuangzi, WANG Zheng, SUN Shiyong, et al. Analysis and improvement of secondary harmonic restraint strategy for transformer differential protection[J]. Electrical Measurement & Instrumentation, 2014, 51(23):123-128.
|
[6] |
卢雪峰, 王增平, 徐岩, 等. 基于波形间断角原理识别变压器励磁涌流的新方法[J]. 继电器, 2007, 35(S1):1-4.
|
|
LU Xuefeng, WANG Zengping, XU Yan, et al. A new method to identify inrush current based on the principle of dead angle[J]. Power System Protection and Control, 2007, 35(S1):1-4.
|
[7] |
何奔腾, 徐习东. 波形比较法变压器差动保护原理[J]. 中国电机工程学报, 1998(6):20-23,29.
|
|
XU Benteng, XU Xidong. Principle of differential protection of transformer by waveform comparison method[J]. Proceedings of the CSEE, 1998(6):20-23,29.
|
[8] |
张员宁, 黄景光, 张艳华, 等. 利用双重特征量鉴别变压器励磁涌流的高阶统计原理[J]. 电力系统保护与控制, 2021, 49(24):21-30.
|
|
ZHANG Yuanning, HUANG Jingguang, ZHANG Yanhua, et al. High order statistical theory for identifying transformer inrush current by using dual characteristics[J]. Power System Protection and Control, 2021, 49(24):21-30.
|
[9] |
翁汉琍, 陈皓, 万毅, 等. 基于巴氏系数的变压器励磁涌流和故障差流识别新判据[J]. 电力系统保护与控制, 2020, 48(10):113-122.
|
|
WENG Hanli, CHEN Hao, WAN Yi, et al. A novel criterion to distinguish inrush current from fault current based on the Bhattacharyya coefficient[J]. Power System Protection and Control, 2020, 48(10):113-122.
|
[10] |
MEDEIROS R P, COSTA F B. A wavelet-based transformer differential protection:Internal fault detection during inrush conditions[J]. IEEE Transactions on Power Delivery, 2018, PP(6):2965-2977.
|
[11] |
戎子睿, 林湘宁, 金能, 等. 基于相空间轨迹识别和多判据融合的变压器保护新策略[J]. 中国电机工程学报, 2020, 40(6):1924-1938.
|
|
RONG Zirui, LIN Xiangning, JIN Neng, et al. A new transformer protection scheme based on the recognition of phase space trajectory and multi-criteria fusion[J]. Proceedings of the CSEE, 2020, 40(6):1924-1938.
|
[12] |
翁汉琍, 刘华, 林湘宁, 等. 基于Hausdorff距离算法的变压器差动保护新判据[J]. 中国电机工程学报, 2018, 38(2):475-483,678.
|
|
WENG Hanli, LIU Hua, LIN Xiangning, et al. A novel criterion of the transformer differential protection based on the Hausdorff distance algorithm[J]. Proceedings of the CSEE, 2018, 38(2):475-483,678.
|
[13] |
WENG H, WANG S, LIN X, et al. A novel criterion applicable to transformer differential protection based on waveform sinusoidal similarity identification[J]. International Journal of Electrical Power & Energy Systems, 2019,105:305-314.
|
[14] |
AFRASIABI S, AFRASIABI M, PARANG B, et al. Integration of accelerated deep neural network into power transformer differential protection[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2):865-876.
doi: 10.1109/TII.9424
|
[15] |
AFRASIABI S, AFRASIABI M, PARANG B, et al. Designing a composite deep learning based differential protection scheme of power transformers[J]. Applied Soft Computing, 2019,87.
|
[16] |
BEJMERT D, REBIZANT W, SCHIEL L. Transformer differential protection with fuzzy logic based inrush stabilization[J]. International Journal of Electrical Power & Energy Systems, 2014.
|
[17] |
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
|
[18] |
赵学文, 付泽宇, 李乐, 等. 基于VMD和PSO-SVM模型的和应涌流识别[J]. 电工技术, 2021(19):30-34.
|
|
ZHAO Xuewen, FU Zeyu, LI Le, et al. Sympathetic inrush current identification based on VMD and PSO-SVM model[J]. Electric Engineering, 2021(19):30-34.
|
[19] |
井萌. 基于EO优化ELM的变压器励磁涌流识别方法研究[D]. 西安: 西安科技大学, 2021.
|
|
JING Meng. Research on recognition method of transformer magnetizing inrush current based on EO optimized ELM[D]. Xi’an: Xi’an University of Science and Technology, 2021.
|
[20] |
RICHMAN J S, RANDALL M J. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart & Circulatory Physiology, 2000, 278(6):H2039.
|
[21] |
冯宝成, 田志浩, 摆世彬, 等. 防止超高压备自投诱发线路零序过流保护误动的对策初探[J]. 电力系统保护与控制, 2021, 49(2):98-106.
|
|
FENG Baocheng, TIAN Zhihao, BAI Shibin, et al. Study on countermeasures to prevent maloperation of zero-sequence overcurrent protection caused by ultra-high-voltage automatic device transfer[J]. Power System Protection and Control, 2021, 49(2):98-106.
|
[22] |
VÁZQUEZ E, ANDRADE M A, ESPONDA H, et al. A new differential protection algorithm for power reactors based on the second central moment[J]. International Journal of Electrical Power and Energy Systems, 2020,118:105795.
|