[1] |
金立军, 闫书佳, 刘源. 基于类Haar特征与级联AdaBoost算法的防振锤识别[J]. 系统仿真学报, 2012, 24(9):1806-1809.
|
|
JIN Lijun, YAN Shujia, LIU Yuan. Seismic hammer recognition based on Haar-like feature and cascading AdaBoost algorithm[J]. Journal of System Simulation, 2012, 24(9):1806-1809.
|
[2] |
WU Haibin, XI Yanping, FANG Weimin, et al. Damper detection in helicopter inspection of power transmission line[C]// Fourth International Conference on Instrumentation and Measurement,Computer,Communication and Control,December 29,Harbin,China. IEEE, 2014:628-632.
|
[3] |
朱铭武, 韩军, 陆冬明, 等. 自然场景中基于局部轮廓特征的对象识别方法[J]. 计算机工程与应用, 2016, 52(1):162-167.
|
|
ZHU Mingwu, HAN Jun, LU Dongming, et al. Object recognition method based on local contour feature in natural scene[J]. Computer Engineering and Applications, 2016, 52(1):162-167.
|
[4] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,OH,USA. IEEE, 2014:580-587.
|
[5] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9):1904-1916.
|
[6] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of 2015 IEEE International Conference on Computer Vision,Santiago,Chile. IEEE, 2015:1440-1448.
|
[7] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
pmid: 27295650
|
[8] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN:Object detection via region-based fully convolutional networks[C]// Advances in Neural Information Processing Systems. New York: Curran Associates Inc., 2016:379-387.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 27-30,2016,Las Vegas,NV,USA. IEEE, 2016:779-788.
|
[10] |
REDMON J, FARHADI A. YOLO9000:Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26,2017,Honolulu,HI,USA. IEEE, 2017:7263-7271.
|
[11] |
REDMON J, FARHADI A. YOLOV3:An incremental improvement[J]. Computer Science, 2018, 4(1):1-6.
|
[12] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single shot multibox detector[C]// European Conference on Computer Vision. Springer,Cham, 2016:21-37.
|
[13] |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS:Fully convolutional one-stage object detection[C]// Proceedings of the IEEE International Conference on Computer Vision,October 27-November 02,2019,Seoul,South Korea. IEEE, 2019:9626-9635.
|
[14] |
BAO Wenxia, REN Yangxun, LIANG Dong, et al. Defect detection algorithm of anti-vibration hammer based on improved cascade R-CNN[C]// 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), December 04-06,2020,Sanya, China. IEEE, 2020:294-297.
|
[15] |
LIU Xinyu, LIN Yating, JIANG Hao, et al. Slippag fault diagnosis of dampers for transmission lines based on faster R-CNN and distance constraint[J]. Electric Power Systems Research, 2021, 199:107449.
doi: 10.1016/j.epsr.2021.107449
|
[16] |
刘又维, 樊绍胜, 唐立军, 等. 基于关键点的输电线路防振锤滑移视觉检测[J]. 激光与光电子学进展. 2020, 57(20):279-285.
|
|
LIU Youwei, FAN Shaosheng, TANG Lijun, et al. Visual detection of vibration damper slip in transmission lines based on key points[J]. Progress in Laser and Optoelectronics, 2020, 57(20):279-285.
|
[17] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and- excitation networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[18] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016:770-778.
|
[19] |
GAO Zilin, XIE Jiangtao, WANG Qilong, et al. Global second-order pooling convolutional networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019:3024-3033.
|
[20] |
QIN Zequn, ZHANG Pengyi, WU Fei. FcaNet:Frequency channel attention networks[J]. Computer Vision and Pattern Recognition, 2021:763-772.
|
[21] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net:Efficient channel attention for deep convolutional neural betworks[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2020:11531-11539.
|
[22] |
ZHANG Chi, LIN Guosheng, LIU Fayao, et al. CANet:Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019:5217-5226.
|
[23] |
WOO S, PARK J, LEE J, et al. CBAM:Convolutional block attention module[C]// The European Conference on Computer Vision, 2018:3-19.
|
[24] |
LANDSKAPE D, NALAMADA T, ARASANIPAL A, et al. Rotate to attend:Convolutional triplet attention module[J]. Computer Vision and Pattern Recognition, 2021:3139-3148.
|