[1] |
CHEN X, ZHANG Y, WANG S, et al. Impedance-phased dynamic control method for grid-connected inverters in a weak grid[J]. IEEE Transactions on Power Electronics, 2016, 32(1):274-283.
doi: 10.1109/TPEL.2016.2533563
|
[2] |
XIN Z, WANG X, LOH P C, et al. Grid-current-feedback control for LCL-filtered grid converters with enhanced stability[J]. IEEE Transactions on Power Electronics, 2016, 32(4):3216-3228.
doi: 10.1109/TPEL.2016.2580543
|
[3] |
XIN Z, LOH P C, WANG X, et al. Highly accurate derivatives for LCL-filtered grid converter with capacitor voltage active damping[J]. IEEE Transactions on Power Electronics, 2015, 31(5):3612-3625.
doi: 10.1109/TPEL.2015.2467313
|
[4] |
HE J, LI Y W, XU D, et al. Deadbeat weighted average current control with corrective feed-forward compensation for microgrid converters with nonstandard LCL filter[J]. IEEE Transactions on Power Electronics, 2016, 32(4):2661-2674.
doi: 10.1109/TPEL.2016.2580005
|
[5] |
LI R T H, HO C N M, CHEN E X. Active virtual ground:Single-phase transformer less grid-connected voltage source inverter topology[J]. IEEE Transactions on Power Electronics, 2017, 33(2):1335-1346.
doi: 10.1109/TPEL.2017.2690146
|
[6] |
SHEN G, ZHU X, ZHANG J, et al. A new feedback method for PR current control of LCL-filter-based grid-connected inverter[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6):2033-2041.
doi: 10.1109/TIE.2010.2040552
|
[7] |
PAN D, RUAN X, WANG X. Direct realization of digital differentiators in discrete domain for active damping of LCL-type grid-connected inverter[J]. IEEE Transactions on Power Electronics, 2017, 33(10):8461-8473.
doi: 10.1109/TPEL.63
|
[8] |
LI M, XIAO H, CHENG M. An adaptive strategy based on repetitive predictive control for improving adaptability of LCL-type grid-connected inverters under weak grid[J]. IEEE Transactions on Power Electronics, 2022, 37(3):2562-2572.
doi: 10.1109/TPEL.2021.3108878
|
[9] |
MIAO Z, YAO W, LU Z. Single-cycle-lag compensator-based active damping for digitally controlled LCL/LLCL-type grid-connected inverters[J]. IEEE Trans. Ind. Electron., 2020, 67(3):1980-1990.
doi: 10.1109/TIE.41
|
[10] |
GUINDON D, SHARK D, ANTONIOU A. Design methodology for nearly linear-phase recursive digital filters by constrained optimization[J]. IEEE Trans. Cir & Sys. I Regular Papers, 2010, 57(7):1719-1731.
|
[11] |
EREN S, PAHLEVANINEZHAD M, BAKHSHAI A, et al. Composite nonlinear feedback control and stability analysis of a grid-connected voltage source inverter with LCL filter[J]. IEEE Trans. Ind. Electron., 2013, 60(11):5059-5074.
doi: 10.1109/TIE.2012.2225399
|
[12] |
LU M, LU X, DRAGICEIV T. Graphical evaluation of time-delay compensation techniques for digitally controlled converters[J]. IEEE Trans. Power Electron., 2017, 33(3):2601-2614.
doi: 10.1109/TPEL.2017.2691062
|
[13] |
YANG D, RUAN X, WU H. A real-time computation method with dual sampling mode to improve the current control performance of the LCL-type grid-connected inverter[J]. IEEE Trans. Ind. Electron., 2015, 62(7):4563-4572.
doi: 10.1109/TIE.41
|
[14] |
YAO W, YANG Y, ZHANG X, et al. Design and analysis of robust active damping for LCL filters using digital notch filters[J]. IEEE Transactions on Power Electronics, 2017, 32(3):2360-2375.
doi: 10.1109/TPEL.2016.2565598
|
[15] |
HARNEFORS L, YEPES A, VIDAL A, et al. Passivity-based stabilization of resonant current controllers with consideration of time delay[J]. IEEE Transactions on Power Electronics, 2014, 29(12):6260-6263.
doi: 10.1109/TPEL.2014.2328669
|