[1] |
胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报, 2021, 21(3):1-15.
|
|
HU Angang. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology, 2021, 21(3):1-15.
|
[2] |
严思韵, 王晨, 周登极. 含氢能气网掺混运输的综合能源系统优化研究[J]. 电力工程技术, 2021, 40(1):10-16,49.
|
|
YAN Siyun, WANG Chen, ZHOU Dengji. Optimization of integrated electricity and gas system considering hydrogen-natural-gas mixture transportation[J]. Electric Power Engineering Technology, 2021, 40(1):10-16,49.
|
[3] |
王颖杰, 詹红霞, 杨孝华, 等. 考虑综合需求响应的电热系统调度[J]. 电力工程技术, 2021, 40(1):17-24.
|
|
WANG Yingjie, ZHAN Hongxia, YANG Xiaohua, et al. Optimal dispatching strategy of combined heat and power system considering integrated demand response[J]. Electric Power Engineering Technology, 2021, 40(1):17-24.
|
[4] |
LIU Sai, ZHOU Cheng, GUO Haomin, et al. Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage[J]. Protection and Control of Modern Power Systems, 2021, 6(1):55-64.
|
[5] |
舒国栋, 贺平平, 马瑞. 考虑风光预测精度特性的多时间尺度机组组合方法[J]. 电力工程技术, 2020, 39(3):78-83.
|
|
SHU Guodong, HE Pingping, MA Rui. Multi-time scale unit combination method considering precision characteristics of wind and solar power forecasting[J]. Electric Power Engineering Technology, 2020, 39(3):78-83.
|
[6] |
栗然, 孙帆, 刘会兰, 等. 考虑能量特性差异的用户级综合能源系统混合时间尺度经济调度[J]. 电网技术, 2020, 44(10):3615-3624.
|
|
LI Ran, SUN Fan, LIU Huilan, et al. Economic dispatch with hybrid time-scale of user-level integrated energy system considering differences in energy characteristics[J]. Power System Technology, 2020, 44(10):3615-3624.
|
[7] |
LI Zhengmao, XU Yan. Temporally-coordinated optimal operation of a multi-energy microgrid under diverse un-certainties[J]. Applied Energy, 2019, 240:719-729.
doi: 10.1016/j.apenergy.2019.02.085
|
[8] |
祁江浩, 李凤婷, 张高航. 需求响应分段参与的多时间尺度源荷协调调度策略[J]. 电力系统保护与控制, 2021, 49(11):61-69.
|
|
QI Jianghao, LI Fengting, ZHANG Gaohang. Multi-time scale scheduling strategy for source-load coordination considering demand response block participation[J]. Power System Protection and Control, 2021, 49(11):61-69.
|
[9] |
熊焰, 吴杰康, 王强, 等. 风光气储互补发电的冷热电联供优化协调模型及求解方法[J]. 中国电机工程学报, 2015, 35(14):3616-3625.
|
|
XIONG Yan, WU Jiekang, WANG Qiang, et al. Coordination model and solution method of combined cooling,heating and power for wind-storage gas storage complementary power generation[J]. Proceedings of the CSEE, 2015, 35(14):3616-3625.
|
[10] |
王佳颖. 计及需求响应的商业园区微网优化运行策略[D]. 杭州: 浙江大学, 2019.
|
|
WANG Jiaying. Optimal operation strategy of commercial park microgrid considering demand response[D]. Hangzhou: Zhejiang University, 2019.
|
[11] |
陆伟. 城市能源环境中分布式供能系统优化配置研究[D]. 北京: 中国科学院研究生院, 2007.
|
|
LU Wei. Optimal planning of distributed CCHP system in urban energy environment[D]. Beijing: Chinese Academy of Sciences, 2007.
|
[12] |
STEPHEN C, PIERLUIGI M. Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4):1234-1244.
doi: 10.1109/TSTE.2015.2424885
|
[13] |
刘君, 穆世霞, 李岩松, 等. 微电网中微型燃气轮机发电系统整体建模与仿真[J]. 电力系统自动化, 2010, 34(7):85-89.
|
|
LIU Jun, MU Shixia, LI Yansong, et al. Overall modeling and simulation of microturbine generation system in microgrids[J]. Automation of Electric Power Systems, 2010, 34(7):85-89.
|
[14] |
李正茂, 张峰, 梁军, 等. 计及附加机会收益的冷热电联供型微电网动态调度[J]. 电力系统自动化, 2015, 39(14):8-15.
|
|
LI Zhengmao, ZHANG Feng, LIANG Jun, et al. Dynamic scheduling of CCHP type of microgrid considering additional opportunity income[J]. Automation of Electric Power Systems, 2015, 39(14):8-15.
|
[15] |
黄伟, 黄婷, 周欢, 等. 基于改进微分进化算法的微电网动态经济优化调度[J]. 电力系统自动化, 2014, 38(9):211-217.
|
|
HUANG Wei, HUANG Ting, ZHOU Huan, et al. Dynamic economical dispatch of microgrid based on improved differential evolution algorithm[J]. Automation of Electric Power Systems, 2014, 38(9):211-217.
|
[16] |
ZHU Ruijin, GUO Weilin, GONG Xuejiao. Short-term load forecasting for CCHP systems considering the correlation between heating, gas and electrical loads based on deep learning[J]. Energies, 2019, 12(17):3308.
doi: 10.3390/en12173308
|
[17] |
栗然, 孙帆, 丁星, 等. 考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法[J]. 电网技术, 2020, 44(11):4121-4134.
|
|
LI Ran, SUN Fan, DING Xing, et al. Ultra short-term load forecasting method for user-level integrated energy system considering spatio-temporal coupling of multi-energy[J]. Power System Technology, 2020, 44(11):4121-4134.
|