电气工程学报 ›› 2022, Vol. 17 ›› Issue (3): 30-39.doi: 10.11985/2022.03.005

• 特邀专栏:储能(储氢)材料、技术、装置及新能源综合应用 • 上一篇    下一篇

扫码分享

磷酸铁锂储能电池过充热失控仿真研究*

于子轩1(), 孟国栋1(), 谢小军2, 赵勇2, 成永红1   

  1. 1.西安交通大学电力设备电气绝缘国家重点实验室 西安 710049
    2.西安热工研究院有限公司 西安 710054
  • 收稿日期:2022-05-24 修回日期:2022-08-05 出版日期:2022-09-25 发布日期:2022-10-28
  • 通讯作者: 孟国栋 E-mail:vyzxalex@126.com;gdmengxjtu@xjtu.edu.cn
  • 作者简介:于子轩,女,1997年生,硕士研究生。主要研究方向为电力设备绝缘性能评价与状态监测。E-mail: vyzxalex@126.com
  • 基金资助:
    *西安热工研究院有限公司研发基金资助项目(TM-21-TYK35)

Simulation Research on Overcharge Thermal Runaway of Lithium Iron Phosphate Energy Storage Battery

YU Zixuan1(), MENG Guodong1(), XIE Xiaojun2, ZHAO Yong2, CHENG Yonghong1   

  1. 1. State Key Laboratory of Electrical Insulation of Power Equipment, Xi’an Jiaotong University, Xi’an 710049
    2. Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 710054
  • Received:2022-05-24 Revised:2022-08-05 Online:2022-09-25 Published:2022-10-28
  • Contact: MENG Guodong E-mail:vyzxalex@126.com;gdmengxjtu@xjtu.edu.cn

摘要:

锂离子电池的热失控是导致储能电站发生起火或爆炸等安全事故的根本原因,研究锂离子电池热失控的发展规律和本征特性对于电化学储能电站的安全监测和故障预警具有重要意义。建立了磷酸铁锂储能电池在过充条件下的三维电化学-热耦合热失控的仿真模型,通过镀锂动力学方程量化过充负极镀锂量,引入SEI膜生长动力学方程反映镀锂与电解液反应速率,以量化负极镀锂与电解液反应产热,并引入其他副反应产热方程共同研究磷酸铁锂电池早期过充热失控温度变化及各副反应产热情况。分别研究了不同充电倍率(1C、2C、3C),不同环境温度(20 ℃、30 ℃、40 ℃)下磷酸铁锂电池热失控早期负极表面镀锂量变化、热失控温度变化曲线以及各副反应产热量变化特性,分析磷酸铁锂电池过充热失控温度发展过程及副反应产热规律。结果表明,负极镀锂与电解液反应作为过充热失控过程最起始的副反应,在电池热失控早期促使了其他副反应的开启,成为过充热失控的起始。本研究可为磷酸铁锂电池过充热失控早期过程探究提供理论参考。

关键词: 磷酸铁锂电池, 镀锂, 过充, 热失控

Abstract:

Thermal runaway of lithium-ion batteries is the fundamental cause of safety accidents such as fire or explosion in energy storage power stations. Therefore, studying the development law and intrinsic characteristics of thermal runaway of lithium-ion batteries is important for the safety monitoring and fault warning of electrochemical energy storage power stations. In this paper, a three-dimensional electrochemical-thermal coupled LiFePO4 battery overcharge thermal runaway simulation model is established. Firstly, the amount of lithium plating on the overcharged negative electrode is quantified by the lithium plating kinetic equation, and secondly, the SEI film growth kinetic equation is introduced to reflect the lithium plating and electrolyte. The reaction rate is used to quantify the heat generated by the reaction between the negative electrode lithium plating and the electrolyte, and other side reaction heat generation equations are introduced to jointly study the temperature change of the lithium iron phosphate battery during the early overcharge and the runaway temperature and the heat generation of each side reaction. The changes in the amount of lithium plating on the negative electrode surface in the early stage of thermal runaway of lithium iron phosphate batteries under different charging rates (1C, 2C, 3C) and different ambient temperatures (20 ℃, 30 ℃, 40 ℃), the temperature curve of thermal runaway, and the change characteristics of the heat generated by the reaction are analyzed, and the development process of the thermal runaway temperature of the lithium iron phosphate battery and the law of the side reaction heat generation are analyzed. The results show that the reaction between the negative electrode lithium plating and the electrolyte is the initial side reaction in the thermal runaway process of overcharge, which promotes the opening of other side reactions in the early stage of thermal runaway of the battery, which becomes the beginning of thermal runaway of overcharge. This study can provide a theoretical reference for the early process of overcharge thermal runaway of LiFePO4 batteries.

Key words: Lithium iron phosphate battery, lithium plating, overcharge, thermal runaway

中图分类号: