[1] |
MENG F, XIONG X, TAN L, et al. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: A review[J]. Energy Storage Materials, 2022, 44:390-407.
doi: 10.1016/j.ensm.2021.10.032
|
[2] |
SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4):267-278.
doi: 10.1038/s41560-018-0107-2
|
[3] |
ZHANG N, DENG T, ZHANG S, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2021:2107899.
|
[4] |
ORENDORFF C J, ROTH E P, NAGASUBRAMANIAN G. Experimental triggers for internal short circuits in lithium-ion cells[J]. Journal of Power Sources, 2011, 196(15):6554-6558.
doi: 10.1016/j.jpowsour.2011.03.035
|
[5] |
GAO X, ZHOU Y N, HAN D, et al. Thermodynamic understanding of Li-dendrite formation[J]. Joule, 2020, 4(9):1864-1879.
doi: 10.1016/j.joule.2020.06.016
|
[6] |
PIAO N, GAO X, YANG H, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2021, 11:100145.
|
[7] |
HUANG C K, SAKAMOTO J, WOLFENSTINE J, et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of The Electrochemical Society, 2000, 147(8):2893.
doi: 10.1149/1.1393622
|
[8] |
SMART M, RATNAKUMAR B, SURAMPUDI S. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. Journal of The Electrochemical Society, 2002, 149(4):A361-A370.
doi: 10.1149/1.1453407
|
[9] |
ZHANG W, XIA H, ZHU Z, et al. Decimal solvent-based high-entropy electrolyte enabling the extended survival temperature of lithium-ion batteries to -130 ℃[J]. CCS Chemistry, 2021, 3(4):1245-1255.
doi: 10.31635/ccschem.020.202000341
|
[10] |
XIE W, LIU W, DANG Y, et al. Investigation on electrolyte-immersed properties of lithium-ion battery cellulose separator through multi-scale method[J]. Journal of Power Sources, 2019, 417:150-158.
doi: 10.1016/j.jpowsour.2019.02.002
|
[11] |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Materials for Sustainable Energy, 2011:171-179.
|
[12] |
ZHANG S, XU K, JOW T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1):137-140.
doi: 10.1016/S0378-7753(02)00618-3
|
[13] |
WANG Y, CAO G J A M. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2008, 20(12):2251-2269.
doi: 10.1002/adma.200702242
|
[14] |
JI Y, ZHANG Y, WANG C Y. Li-ion cell operation at low temperatures[J]. Journal of The Electrochemical Society, 2013, 160(4):A636.
doi: 10.1149/2.047304jes
|
[15] |
HUBBLE D, BROWN D E, ZHAO Y, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15:550.
|
[16] |
OKADA K, KIMURA I, MACHIDA K. High rate capability by sulfur-doping into LiFePO4 matrix[J]. RSC Advances, 2018, 8(11):5848-5853.
doi: 10.1039/C7RA12740E
|
[17] |
ZHU W, LIU D, GAGNON C, et al. Phase transformation of doped LiCoPO4 during galvanostatic cycling[J]. Materials, 2020, 13(17):3810.
doi: 10.3390/ma13173810
|
[18] |
WANG A P, HOU C E, HUNG S W. Exploration of the evolution of nanotechnology from a patent co-classification perspective[J]. Nanotechnology Reviews, 2018, 7(3):233-245.
doi: 10.1515/ntrev-2018-0005
|
[19] |
KIM J M, CHUNG H T. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V[J]. Electrochimica Acta, 2004, 49(6):937-944.
doi: 10.1016/j.electacta.2003.10.005
|
[20] |
REN X, ZHANG X, SHADIKE Z, et al. Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V Li||LiCoO2 batteries[J]. Advanced Materials, 2020, 32(49):2004898.
|
[21] |
XIE Y, LI J, YUAN C J E A. Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling[J]. Electrochimica Acta, 2014, 127:266-275.
doi: 10.1016/j.electacta.2014.02.035
|
[22] |
KONG J Z, WANG S S, TAI G A, et al. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating[J]. Journal of Alloys and Compounds, 2016, 657:593-600.
doi: 10.1016/j.jallcom.2015.10.187
|
[23] |
SHI S, MAI Y, TANG Y, et al. Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials[J]. Electrochimica Acta, 2012, 77:39-46.
doi: 10.1016/j.electacta.2012.05.110
|
[24] |
WEPPNER W, HUGGINS R A. Electrochemical investigation of the chemical diffusion,partial ionic conductivities,and other kinetic parameters in Li3Sb and Li3Bi[J]. Journal of Solid State Chemistry, 1977, 22(3):297-308.
doi: 10.1016/0022-4596(77)90006-8
|
[25] |
SHI S, TU J, TANG Y, et al. Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13] O2 with improved rate capability[J]. Journal of Power Sources, 2013, 228:14-23.
doi: 10.1016/j.jpowsour.2012.11.091
|
[26] |
CHURIKOV A, IVANISHCHEV A, IVANISHCHEVA I, et al. Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques[J]. Electrochimica Acta, 2010, 55(8):2939-2950.
doi: 10.1016/j.electacta.2009.12.079
|