[1] |
段家振. 试析输电线路通道可视化系统关键技术[J]. 科技创新与应用, 2019(30):151-152.
|
|
DUAN Jiazhen. Analysis of key technologies of transmission line channel visualization system[J]. Science & Technology Innovation and Application, 2019(30):151-152.
|
[2] |
王炜, 王树军, 徐硕, 等. 输电线路通道可视化运维管理体系的应用[J]. 电气时代, 2018(11):77-79.
|
|
WANG Wei, WANG Shujun, XU Shuo, et al. Application of visual operation and maintenance management system for transmission line channels[J]. Electric Times, 2018(11):77-79.
|
[3] |
吕志来, 刘浩, 李海, 等. 输电线路通道可视化系统关键技术研究及实践[J]. 电力信息与通信技术, 2016, 14(9):52-57.
|
|
LÜ Zhilai, LIU Hao, LI Hai, et al. Research and practice on key technologies of transmission line channel visualization system[J]. Electric Power Information and Communication Technology, 2016, 14(9):52-57.
|
[4] |
叶俊健, 邓伟锋, 徐常志, 等. 基于深度强化学习与图像智能识别的输电线路在线监测系统[J]. 工业技术创新, 2020, 7(3):72-75.
|
|
YE Junjian, DENG Weifeng, XU Changzhi, et al. Transmission line online monitoring system based on deep reinforcement learning and image intelligent recognition[J]. Industrial Technology Innovation, 2020, 7(3):72-75.
|
[5] |
孟秀军, 谷连军. 基于Skyline的输电线路巡检数据可视化系统研究[J]. 信息与电脑, 2020, 32(6):141-144.
|
|
MENG Xiujun, GU Lianjun. Research on transmission line inspection data visualization system based on Skyline[J]. Information and Computer, 2020, 32(6):141-144.
|
[6] |
徐常志, 邓伟锋, 李耀均, 等. 输电线路图像可视化监测终端无线通信解决方案[J]. 工业技术创新, 2020, 7(6):99-102,111.
|
|
XU Changzhi, DENG Weifeng, LI Yaojun, et al. Wireless communication solution for visualized monitoring terminal of transmission line image[J]. Industrial Technology Innovation, 2020, 7(6):99-102,111.
|
[7] |
曾昌健, 李丽, 郑国华, 等. 基于VR技术的输电线路运检一体化研究[J]. 山东农业大学学报, 2021, 52(2):304-307.
|
|
ZENG Changjian, LI Li, ZHENG Guohua, et al. Study on the integration of transmission line transport and inspection based on VR technology[J]. Journal of Shandong Agricultural University, 2021, 52(2):304-307.
|
[8] |
江泽涛, 秦嘉奇, 胡硕. 基于多路卷积神经网络的多光谱场景识别方法[J]. 计算机科学, 2019, 46(9):265-270.
|
|
JIANG Zetao, QIN Jiaqi, HU Shuo. Multi-spectral scene recognition method based on multi-channel convolutional neural network[J]. Computer Science, 2019, 46(9):265-270.
|
[9] |
戴玉超, 张静, 何明一. 深度残差网络的多光谱遥感图像显著目标检测[J]. 测绘学报, 2018, 47(6):873-881.
|
|
DAI Yuchao, ZHANG Jing, HE Mingyi. The salient target detection of multispectral remote sensing image based on deep residual network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):873-881.
|
[10] |
李一松. 基于卷积神经网络的多光谱图像多标签场景分类[J]. 电子设计工程, 2018, 26(23):25-29.
|
|
LI Yisong. Multi-spectral image multi-label scene classification based on convolutional neural network[J]. Electronic Design Engineering, 2018, 26(23):25-29.
|
[11] |
江泽涛, 刘小艳, 胡硕. 基于 CNN 的红外与可见光融合图像的场景识别[J]. 计算机工程与设计, 2019:2289-2294.
|
|
JIANG Zetao, LIU Xiaoyan, HU Shuo. Scene recognition of infrared and visible light fusion image based on CNN[J]. Computer Engineering and Design, 2019:2289-2294.
|
[12] |
张忠星, 李鸿龙, 张广乾, 等. CCNet:面向多光谱图像的高速船只检测级联卷积神经网络[J]. 红外与毫米波学报, 2019(3):290-294.
|
|
ZHANG Zhongxing, LI Honglong, ZHANG Guangqian, et al. CCNet:High-speed ship detection cascaded convolutional neural network for multispectral image[J]. Journal of Infrared and Millimeter Waves, 2019(3):290-294.
doi: 10.11972/j.issn.1001-9014.2019.03.006
|
[13] |
姚建华, 吴加敏, 杨勇, 等. 全卷积神经网络下的多光谱遥感影像分割[J]. 中国图象图形学报, 2020, 25(1):180-192.
|
|
YAO Jianhua, WU Jiamin, YANG Yong, et al. Multispectral remote sensing image segmentation under a fully convolutional neural network[J]. China Journal of Graphic Graphics, 2020, 25(1):180-192.
|
[14] |
刘佶鑫, 魏嫚. 可见光-近红外HSV融合的场景类字典稀疏识别[J]. 计算机应用, 2018, 38(12):3359-3366.
|
|
LIU Jixin, WEI Man. Sparse recognition of scene dictionary based on visible light-near infrared HSV fusion[J]. Journal of Computer Applications, 2018, 38(12):3359-3366.
|
[15] |
REDMON J, FARHADI A. YOLO9000:Better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:7263-7271.
|
[16] |
赵飞扬, 罗兵, 林国军, 等. 基于改进YOLOv3的火焰检测[J]. 中国科技论文, 2020, 15(7):820-826.
|
|
ZHAO Feiyang, LUO Bing, LIN Guojun, et al. Based on improved flame detection of YOLOv3[J]. Chinese Science and Technology Papers, 2020, 15(7):820-826.
|
[17] |
钟映春, 孙思语, 吕帅, 等. 铁塔航拍图像中鸟巢的YOLOv3识别研究[J]. 广东工业大学学报, 2020, 37(3):42-48.
|
|
ZHONG Yingchun, SUN Siyu, LÜ Shuai, et al. Research on YOLOv3 recognition of bird’s nest in aerial images of iron tower[J]. Journal of Guangdong University of Technology, 2020, 37(3):42-48.
|
[18] |
于晓英, 苏宏升, 姜泽, 等. 基于 YOLO 的铁路侵限异物检测方法[J]. 兰州交通大学学报, 2020, 39(2):37-42.
|
|
YU Xiaoying, SU Hongsheng, JIANG Ze, et al. YOLO-based railway intrusion detection method for foreign bodies[J]. Journal of Lanzhou Jiaotong University, 2020, 39(2):37-42.
|
[19] |
刘肯, 何姣姣, 张永平, 等. 改进 YOLO 的车辆检测算法[J]. 现代电子技术, 2019, 42(13):47-50.
|
|
LIU Ken, HE Jiaojiao, ZHANG Yongping, et al. Improved YOLO vehicle detection algorithm[J]. Modern Electronics Technique, 2019, 42(13):47-50.
|
[20] |
江枭宇, 李忠兵, 张军豪, 等. 基于NCS2神经计算棒的车辆检测方法[J]. 计算机工程, 2021, 47(3):298-303.
|
|
JIANG Xiaoyu, LI Zhongbing, ZHANG Junhao, et al. Vehicle detection method based on NCS2 neural computing stick[J]. Computer Engineering, 2021, 47(3):298-303.
|
[21] |
李清, 杨晓辉, 刘振声, 等. 基于灰色聚类分析的输电线路舞动分级预警方案[J]. 电测与仪表, 2020, 57(17):45-51.
|
|
LI Qing, YANG Xiaohui, LIU Zhensheng, et al. Graded early warning scheme for transmission line galloping based on gray cluster analysis[J]. Electrical Measurement and Instrumentation, 2020, 57(17):45-51.
|
[22] |
徐铭铭, 牛荣泽, 谢芮芮, 等. 多源信息融合的配电网重复多发性停电在线监测与预警技术[J]. 山东科学, 2020, 33(4):117-123.
doi: 10.3976/j.issn.1002-4026.2020.04.015
|
|
XU Mingming, NIU Rongze, XIE Ruirui, et al. Multi-source information fusion online monitoring and early warning technology for repetitive power outages in distribution networks[J]. Shandong Science, 2020, 33(4):117-123.
doi: 10.3976/j.issn.1002-4026.2020.04.015
|
[23] |
陈尚, 蒋毅, 宋珍. 电力电缆火灾风险评价模型与预警信号分级[J]. 南方电网技术, 2020, 14(4):3-7,16.
|
|
CHEN Shang, JIANG Yi, SONG Zhen. Power cable fire risk evaluation model and early warning signal classification[J]. Southern Grid Technology, 2020, 14(4):3-7,16.
|