电气工程学报 ›› 2022, Vol. 17 ›› Issue (3): 194-202.doi: 10.11985/2022.03.023

• 电力系统 • 上一篇    下一篇

扫码分享

结合场景分析的输电线路通道可视化分级预警研究

武永泉1(), 张四维1(), 彭冲1(), 焦良葆2(), 浦东2()   

  1. 1.国网江苏省电力有限公司南京供电公司 南京 210019
    2.南京工程学院人工智能产业技术研究院 南京 211167
  • 收稿日期:2021-01-29 修回日期:2022-04-16 出版日期:2022-09-25 发布日期:2022-10-28
  • 作者简介:武永泉,男,1984年生,高级工程师。主要研究方向为输电运检管理。E-mail: 260148187@qq.com
    张四维,男,1988年生,高级工程师。主要研究方向为输电运检管理。E-mail: 573271628@qq.com
    彭冲,男,1992年生,高级工程师。主要研究方向为输电运检技术。E-mail: 272068958@qq.com
    焦良葆,男,1972年生,博士,教授,硕士研究生导师。主要研究方向为图像信号处理、视觉信息理解。E-mail: jiaoliangbao@njit.com
    浦东,男,1996年生,硕士研究生。主要研究方向为智能电网及信息技术。E-mail: 820385484@qq.com

Research on Visual Hierarchical Early Warning of Transmission Line Channel Combined with Scene Analysis

WU Yongquan1(), ZHANG Siwei1(), PENG Chong1(), JIAO Liangbao2(), PU Dong2()   

  1. 1. Nanjing Power Supply Company, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210019
    2. Institute of Artificial Intelligence Industry Technology, Nanjing Institute of Technology, Nanjing 211167
  • Received:2021-01-29 Revised:2022-04-16 Online:2022-09-25 Published:2022-10-28

摘要:

针对输电线路横跨地域广,输电通道中隐患目标多的问题,提出了输电线路通道可视化分级预警模型。首先改进深度残差网络提取输入图像的多光谱信息,通过软阈值化来减少噪声影响,提高输电线路通道场景分析模型的准确度;然后利用YOLOv3目标检测算法构建输电线路通道隐患目标识别模型,针对隐患中的烟雾、施工车辆目标小的问题,采用难负样本挖掘策略,减少图片背景的影响,再根据输电线路通道的分级预警结构构建分级预警模型。研究结果表明,结合场景分析的输电线路通道可视化分级预警模型能够科学、准确地反映出输电线路通道的隐患预警状态,为输电线路运行维护工作提供指导。

关键词: 输电线路通道可视化, 场景分析, 目标识别, 分级预警, 深度学习

Abstract:

In view of the problem that the transmission line spans a wide area and has many hidden targets in the transmission channel, the visual grading warning model of the transmission line channel is put forward. First of all, the depth residual network to is improved to extract the multispectral information of the input image, the noise effect is reduced by soft threshold, the accuracy of the transmission line channel scene analysis model is improved, and then YOLOv3 target detection algorithm is used to build the transmission line channel hidden danger target identification model. Aiming at the problems of hidden smoke and small targets of contruction vihicles, hard example mining strategy is adopted to reduce the impact of the picture background, and then an early warning model is build based on the transmission line channel classification early warning structure. The results show that the visual and graded early warning model of transmission line channel combined with scene analysis can scientifically and accurately reflect the hidden danger warning state of transmission line channel and provide guidance for the operation and maintenance of transmission line.

Key words: Transmission line channel visualization, scene analysis, target recognition, hierarchical warning, deep learning

中图分类号: