[1] |
肖湘宁, 韩民晓, 徐永海. 电能质量分析与控制[M]. 北京: 中国电力出版社, 2010.
|
|
XIAO Xiangning, HAN Minxiao, XU Yonghai. Analysis and control of power quality[M]. Beijing: China Electric Power Press, 2010.
|
[2] |
王玲, 高倩倩, 陶顺, 等. 基于暂降类型判断的短路故障类型识别研究[J]. 电测与仪表, 2013, 50(6):8-13.
|
|
WANG Ling, GAO Qianqian, TAO Shun, et al. Research on short-circuit fault type identification based on sag type judgment[J]. Electrical Measurement & Instrumentation, 2013, 50(6):8-13.
|
[3] |
肖湘宁, 陶顺. 中性点不同接地方式下的电压暂降类型及其在变压器间的传递(一)[J]. 电工技术学报, 2007, 22(9):143-153.
|
|
XIAO Xiangning, TAO Shun. Types of voltage sags and their transmission between transformers with different neutral grounding methods (1)[J]. Transactions of China Electrotechnical Society, 2007, 22(9):143-153.
|
[4] |
陶顺, 肖湘宁. 中性点不同接地方式下的电压暂降类型及其在变压器间的传递(二)[J]. 电工技术学报, 2007, 22(10):156-159.
|
|
TAO Shun, XIAO Xiangning. Types of voltage sags and their transfer between transformers with different neutral grounding methods (2)[J]. Transactions of China Electrotechnical Society, 2007, 22(10):156-159.
|
[5] |
WANG Y, BOLLEN M H J, XIAO X Y. Calculation of the phase-angle-jump for voltage dips in three-phase systems[J]. IEEE Transactions on Power Delivery, 2015, 30(1):480-487.
doi: 10.1109/TPWRD.2014.2352358
|
[6] |
徐永海, 兰巧倩, 孔祥雨, 等. 电压暂降特征值统计分析及暂降传播特性[J]. 电工技术学报, 2016, 31(11):165-175.
|
|
XU Yonghai, LAN Qiaoqian, KONG Xiangyu, et al. Statistical analysis of voltage sag eigenvalues and sag propagation characteristics[J]. Transactions of China Electrotechnical Society, 2016, 31(11):165-175.
|
[7] |
罗珊珊, 杜晓彤, 张军, 等. 电压暂降通过多级变压器的传播规律研究[J]. 电力电容器与无功补偿, 2019, 40(5):170-175.
|
|
LUO Shanshan, DU Xiaotong, ZHANG Jun, et al. Study on the propagation rule of voltage sag through multi-stage transformers[J]. Power Capacitors and Reactive Compensation, 2019, 40(5):170-175.
|
[8] |
郑智聪, 王红, 齐林海. 基于深度学习模型融合的电压暂降源识别方法[J]. 中国电机工程学报, 2019, 39(1):97-104.
|
|
ZHENG Zhicong, WANG Hong, QI Linhai. A method for identifying voltage sag sources based on deep learning model fusion[J]. Proceedings of the CSEE, 2019, 39(1):97-104.
|
[9] |
贾勇, 何正友, 赵静. 基于小波熵和概率神经网络的配电网电压暂降源识别方法[J]. 电网技术, 2009, 33(16):63-69.
|
|
JIA Yong, HE Zhengyou, ZHAO Jing. A method for identifying the source of voltage sag in distribution network based on wavelet entropy and probabilistic neural network[J]. Power System Technology, 2009, 33(16):63-69.
|
[10] |
祁博, 邹金慧, 范玉刚, 等. 基于 Hilbert-Huang 变换和小波包能量谱的电压暂降源识别[J]. 中国电力, 2013, 46(8):112-117.
|
|
QI Bo, ZOU Jinhui, FAN Yugang, et al. Identification of voltage sags source based on Hilbert-Huang transform and wavelet packet energy spectrum[J]. Electric Power, 2013, 46(8):112-117.
|
[11] |
吕干云, 方奇品, 蔡秀珊. 基于多分类支持向量机的电压暂降源识别[J]. 电力系统保护与控制, 2010, 38(22):151-155.
|
|
LÜ Ganyun, FANG Qipin, CAI Xiushan. Source identification of voltage sag based on multi-class support vector machine[J]. Power System Protection and Control, 2010, 38(22):151-155.
|
[12] |
赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018(6):82-88.
|
|
ZHAO Guangquan, LIU Xiaoyong, JIANG Zedong, et al. An unsupervised construction method of bearing health factors based on deep learning[J]. Chinese Journal of Scientific Instrument, 2018(6):82-88.
|
[13] |
WANG Shouxiang, CHEN Haiwen. A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network[J]. Applied Energy, 2019, 235:1126-1140.
doi: 10.1016/j.apenergy.2018.09.160
|
[14] |
李丹奇, 梅飞, 张宸宇, 等. 基于深度置信网络的电压暂降特征提取及源辨识方法[J]. 电力系统自动化, 2020, 44(4):150-157.
|
|
LI Danqi, MEI Fei, ZHANG Chenyu, et al. Voltage sag feature extraction and source identification method based on deep belief network[J]. Automation of Electric Power Systems, 2020, 44(4):150-157.
|
[15] |
BENGIO Y, LAMBLIN P, DAN P, et al. Greedy layer-wise training of deep networks[C]//International Conference on Neural Information Processing Systems, 2007:153-160.
|
[16] |
VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12):3371-3408.
|
[17] |
VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008:1096-1103.
|
[18] |
PASCAL V, HUGO L, ISABELLE L. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12):3371-3408.
|
[19] |
朱乔木, 陈金富, 李弘毅, 等. 基于堆叠自动编码器的电力系统暂态稳定评估[J]. 中国电机工程学报, 2018, 38(10):2937-2946,3144.
|
|
ZHU Qiaomu, CHEN Jinfu, LI Hongyi, et al. Power system transient stability assessment based on stacked autoencoders[J]. Proceedings of the CSEE, 2018, 38(10):2937-2946,3144.
|
[20] |
丁宁, 蔡维, 锁娟, 等. 电压暂降源识别方法研究[J]. 电网技术, 2008, 32(S2):55-59.
|
|
DING Ning, CAI Wei, SUO Juan, et al. Research on voltage sag sources recognition method[J]. Power System Technology, 2008, 32(S2):55-59.
|
[21] |
储佳伟, 袁晓冬, 陈兵, 等. 结合小波分析和改进型DTW距离的配电网电压暂降源辨识方法[J]. 电网技术, 2018, 42(2):637-643.
|
|
CHU Jiawei, YUAN Xiaodong, CHEN Bing, et al. A method for distribution network voltage sag source identification combining wavelet analysis and modified DTW distance[J]. Power System Technology, 2018, 42(2):637-643.
|