[1] |
ZEB K, ISLAM S U, UDDIN W, et al. An overview of transformerless inverters for grid connected photovoltaic system[C]//2018 International Conference on Computing,Electronic and Electrical Engineering (ICE Cube). IEEE, 2018:1-6.
|
[2] |
周林, 杨冰, 郭珂, 等. 光伏并网系统中直流注入问题最新进展及发展趋势[J]. 电力系统保护与控制, 2012, 40(6):147-155.
|
|
ZHOU Lin, YANG Bing, GUO Ke, et al. The progress and development trend of the DC injection issue in PV grid-connected systems[J]. Power System Protection and Control, 2012, 40(6):147-155.
|
[3] |
XIAO H. Overview of transformerless photovoltaic grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2021, 36(1):533-548.
doi: 10.1109/TPEL.63
|
[4] |
LONG B, ZHANG M, LIAO Y, et al. An overview of DC component generation,detection and suppression for grid-connected converter systems[J]. IEEE Access, 2019, 7:110426-110438.
doi: 10.1109/Access.6287639
|
[5] |
GONZÁLEZ R, GUBÍA E, LÓPEZ J, et al. Transformerless single-phase multilevel-based photovoltaic inverter[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7):2694-2702.
doi: 10.1109/TIE.2008.924015
|
[6] |
BLEWITT W M, ATKINSON D J, KELLY J, et al. Approach to low-cost prevention of DC injection in transformerless grid connected inverters[J]. IET Power Electronics, 2010, 3(1):111-119.
doi: 10.1049/iet-pel.2008.0319
|
[7] |
GUO Xiaoqiang, WU Weiyang, GU Herong, et al. DC injection control for grid-connected inverters based on virtual capacitor concept[C]//2008 International Conference on Electrical Machines and Systems. IEEE, 2008:2327-2330.
|
[8] |
WANG Wei, WANG Ping, BEI Taizhou, et al. DC injection control for grid-connected single-phase inverters based on virtual capacitor[J]. Journal of Power Electronics, 2015, 15(5):1338-1347.
doi: 10.6113/JPE.2015.15.5.1338
|
[9] |
YAN Qingzeng, WU Xiaojie, YUAN Xibo, et al. Minimization of the DC component in transformerless three-phase grid-connected photovoltaic inverters[J]. IEEE Transactions on Power Electronics, 2014, 30(7):3984-3997.
doi: 10.1109/TPEL.2014.2350485
|
[10] |
李继超, 张咪, 陈超波, 等. 一种带有直流分量抑制的电网电压前馈控制策略[J]. 自动化与仪表, 2018, 33(8):10-15,19.
|
|
LI Jichao, ZHANG Mi, CHEN Chaobo, et al. A grid voltage feedforward control strategy with DC component suppression[J]. Automation & Instrumentation, 2018, 33(8):10-15,19.
|
[11] |
BO Long, WANG Wei, HUANG Lijun, et al. Design and implementation of a virtual capacitor based DC current suppression method for grid-connected inverters[J]. ISA Transactions, 2019(92):257-272.
|
[12] |
孟建辉, 石新春, 付超, 等. 基于PR控制的光伏并网电流优化控制[J]. 电力自动化设备, 2014, 34(2):42-47.
|
|
MENG Jianhui, SHI Xinchun, FU Chao, et al. Optimal control of photovoltaic grid-connected current based on PR control[J]. Electric Power Automation Equipment, 2014, 34(2):42-47.
|
[13] |
任明炜, 孙玉堂, 嵇小辅. 数据可视化的LCL型并网逆变器PI参数设计[J]. 电力电子技术, 2016, 50(8):44-47.
|
|
REN Mingwei, SUN Yutang, JI Xiaofu. PI parameter design of LCL type grid-connected[J]. Power Electronics, 2016, 50(8):44-47.
|
[14] |
于文倩, 同向前, 燕聪, 等. 提高弱电网下LCL型并网逆变器稳定性的改进电网电压前馈策略[J]. 电气工程学报, 2019, 14(2):79-85.
|
|
YU Wenqian, TONG Xiangqian, YAN Cong, et al. An improved grid voltage feed forward strategy for LCL-type grid-connected inverters in weak grid[J]. Journal of Electrical Engineering, 2019, 14(2):79-85.
|
[15] |
鲍陈磊, 阮新波, 王学华, 等. 基于PI调节器和电容电流反馈有源阻尼的LCL型并网逆变器闭环参数设计[J]. 中国电机工程学报, 2012, 32(25):19,133-142.
|
|
BAO Chenlei, RUAN Xinbo, WANG Xuehua, et al. Design of grid-connected inverters with LCL filter based on PI regulator and capacitor current feedback active damping[J]. Proceedings of the CSEE, 2012, 32(25):19,133-142.
|
[16] |
张明锐, 尉芬. 基于比例谐振的永磁直驱风电机组高电压穿越控制策略[J]. 电气工程学报, 2018, 13(3):1-8.
|
|
ZHANG Mingrui, WEI Fen. The HVRT control strategy of direct-driven pmsg based on proportional-resonant controller[J]. Journal of Electrical Engineering, 2018, 13(3):1-8.
|
[17] |
丁金勇, 吕建国, 徐炜基, 等. 弱电网下基于模型预测控制的NPC三电平LCL型并网逆变器谐振抑制方法研究[J]. 电气工程学报, 2021, 16(2):190-198.
|
|
DING Jinyong, LÜ Jianguo, XU Weiji, et al. Research on resonance suppression method of LCL-filtered NPC 3-level grid-connected inverter based on model predictive control in weak grid[J]. Journal of Electrical Engineering, 2021, 16(2):190-198.
|