电气工程学报 ›› 2023, Vol. 18 ›› Issue (2): 108-124.doi: 10.11985/2023.02.011
收稿日期:
2022-05-26
修回日期:
2022-06-28
出版日期:
2023-06-25
发布日期:
2023-07-12
通讯作者:
鞠平,男,1962年生,博士,教授,博士研究生导师。主要研究方向为新能源电力系统建模、分析与控制等。E-mail:pju@hhu.edu.cn
作者简介:
刘瀚琛,男,1995年生,博士研究生。主要研究方向为电力系统弹性、综合能源电力系统优化等。E-mail:hhulhc@hhu.edu.cn基金资助:
LIU Hanchen(), WANG Chong(
), JU Ping(
)
Received:
2022-05-26
Revised:
2022-06-28
Online:
2023-06-25
Published:
2023-07-12
摘要:
为实现“双碳”战略目标,新能源、天然气等清洁低排放的发电方式备受关注并得到了大力发展,清洁高效的综合能源电力系统正蓬勃兴起。与此同时,新能源出力的随机性和多能源系统组成的复杂性日益突出,也加大了综合能源电力系统安全稳定运行的难度,尤其是给系统针对极端事件的弹性分析与提升带来了新的挑战。为此,围绕综合能源电力系统弹性分析与提升,本文从模型构建、分析评估和提升方式的角度开展了相关介绍与梳理。首先简述了综合能源电力系统的组成结构和建模构建方法;其次阐述了综合能源电力系统弹性的相关概念以及分析方法,其中包含了极端事件造成的风险传播过程分析和弹性评估体系架构等;然后按照极端事件的发展阶段梳理总结了综合能源电力系统弹性的提升方法,包括预防性策略、响应性策略和恢复性策略;最后,结合文献调研结果,对“双碳”背景下综合能源电力系统弹性相关问题进行展望。
中图分类号:
刘瀚琛, 王冲, 鞠平. 双碳背景下综合能源电力系统弹性分析与提升研究综述*[J]. 电气工程学报, 2023, 18(2): 108-124.
LIU Hanchen, WANG Chong, JU Ping. Review on Resilience Analysis and Enhancement of Integrated Energy Power Systems Considering Dual Carbon Goal[J]. Journal of Electrical Engineering, 2023, 18(2): 108-124.
表1
常见的综合能源电力系统建模方法"
层面 | 建模分析方法 | 方法特点 |
---|---|---|
能量交互层 | 管道稳态模型[ | 仅包含节点气压和支路流量的代数关系,仅适用于稳态分析 |
动态管存模型[ | 考虑气网等系统的管存效应,可反映一定程度的动态特性 | |
离散差分模型[ | 可考虑不同能源系统的动态特性,计算量大;可用于动态分析 | |
统一能路模型[ | 由“场”到“路”,推导出不同能源系统的阻、容、感等元件模型 | |
信息交流层 | 复杂网络 理论[ | 借鉴图论思想,主要考虑通信网络的拓扑结构和物理系统的关联 |
基于潮流 模型[ | 同时考虑了信息网络拓扑结构和信息流动量对能量层面的影响 | |
基于系统状态 方程[ | 以信息网功能为出发点,对耦合部分构建控制器以满足运行要求 |
表2
常见的弹性评估方式对比"
弹性评估理论类别 | 弹性评估方式 | 内容 | 特点 |
---|---|---|---|
基于系统表现 | “弹性三角形”[ | 将极端事件过程分为三个阶段,把系统性能损失累积量作为弹性指标 | 对极端过程的描述相对简易,计算相对简单 |
“弹性梯形”[ | 对极端事件过程更加细化,考虑了系统性能低谷阶段,弹性评估较为全面 | 对极端过程的描述相对简易,计算量较大 | |
基于设备可用性[ | 将弹性指标与建立设备可用性和恢复时间相关联 | 考虑了设备的退化和恢复,误差偏高 | |
基于社会效应[ | 对社会满意度量化以衡量系统弹性 | 弹性评价维度相对单一 | |
基于影响因素的系统特征 | 基于多准则决 策[ | 选取系统的多个属性变量并设置相应的权重作为系统弹性指标 | 对系统特征属性以及相应权重的选取较为严格 |
基于图论方式[ | 围绕系统拓扑结构提出弹性指标,如节点冗余度等 | 计算较为复杂 |
[1] |
SECK G S, KRAKOWSKI V, ASSOUMOU E, et al. Embedding power system’s reliability within a long-term energy system optimization model:Linking high renewable energy integration and future grid stability for France by 2050[J]. Applied Energy, 2020, 257:114037.
doi: 10.1016/j.apenergy.2019.114037 |
[2] |
MARUF M N I. Open model-based analysis of a 100% renewable and sector-coupled energy system:The case of Germany in 2050[J]. Applied Energy, 2021, 288:116618.
doi: 10.1016/j.apenergy.2021.116618 |
[3] |
TRAINER T. Can Australia run on renewable energy? The negative case[J]. Energy Policy, 2012, 50:306-314.
doi: 10.1016/j.enpol.2012.07.024 |
[4] |
JACOBSON M Z, DELUCCHI M A, BAUER Z A F, et al. 100% clean and renewable wind,water,and sunlight all-sector energy roadmaps for 139 countries of the world[J]. Joule, 2017, 1(1):108-121.
doi: 10.1016/j.joule.2017.07.005 |
[5] | 胡志坚, 刘如, 陈志. 中国“碳中和”承诺下技术生态化发展战略思考[J]. 中国科技论坛, 2021, 5(5):14-20. |
HU Zhijian, LIU Ru, CHEN Zhi. Strategic thinking on the ecological development of technology under China’s “carbon neutrality” commitment[J]. Forum on Science and Technology in China, 2021, 5(5):14-20. | |
[6] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”:科学问题与研究框架[J]. 电网技术, 2022, 46(3):821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power system[J]. Power System Technology, 2022, 46(3):821-833. | |
[7] | 国家电网公司发布“碳达峰、碳中和”行动方案[N]. 国家电网报,2021-03-02(1). |
The State Grid Corporation of China issued a “carbon peak and carbon neutral” action plan[N]. State Grid News,2021-03-02(1). | |
[8] | SANS Institute. Confirmation of a coordinated attack on the Ukrainian power grid[EB/OL]. [2022-05-26]. https://www.sans.org/blog/confirmation-of-a-coordinated-attack-on-the-ukrainian-power-grid/. |
[9] | California ISO. Preliminary root cause analysis mid-August 2020 heat storm[EB/OL]. [2022-05-26]. http://www.caiso.com/Documents/Final-Root-Cause-Analysis-Mid-August-2020-Extreme-Heat-Wave.pdf. |
[10] | ERCOT. Review of February 2021 extreme cold weather event-ERCOT presentation[EB/OL]. [2022-05-26]. http://www.ercot.com/content/wcm/key_documents_lists/225373/2.2_REVISED_ERCOT_Presentation.pdf. |
[11] | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统:述评与展望[J]. 电力系统自动化, 2018, 42(4):11-24. |
YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation:Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4):11-24. | |
[12] | 张儒峰, 李雪, 姜涛, 等. 城市综合能源系统韧性评估与提升综述[J]. 全球能源互联网, 2021, 4(2):122-132. |
ZHANG Rufeng, LI Xue, JIANG Tao, et al. Review on resilience assessment and enhancement of urban integrated energy system[J]. Journal of Global Energy Interconnection, 2021, 4(2):122-132. | |
[13] |
HUANG Z, WANG C, STOJMENOVIC M, et al. Characterization of cascading failures in interdependent cyber-physical systems[J]. IEEE Transactions on Computers, 2015, 64(8):2158-2168.
doi: 10.1109/TC.2014.2360537 |
[14] | 胡怡霜, 丁一, 朱忆宁, 等. 基于状态依存矩阵的电力信息物理系统风险传播分析[J]. 电力系统自动化, 2021, 45(15):1-10. |
HU Yishuang, DING Yi, ZHU Yining, et al. Risk propagation analysis of cyber-physical power system based on state dependence matrix[J]. Automation of Electric Power Systems, 2021, 45(15):1-10. | |
[15] | 瞿小斌, 文云峰, 叶希, 等. 基于串行和并行ADMM算法的电-气能量流分布式协同优化[J]. 电力系统自动化, 2017, 41(4):12-19. |
QU Xiaobin, WEN Yunfeng, YE Xi, et al. Distributed optimization of electric-gas integrated energy flow using serial and parallel iterative modes for alternating direction method of multipliers[J]. Automation of Electric Power Systems, 2017, 41(4):12-19. | |
[16] |
WEN Y, QU X, LI W, et al. Synergistic operation of electricity and natural gas networks via ADMM[J]. IEEE Transactions on Smart Grid, 2018, 9(5):4555-4565.
doi: 10.1109/TSG.5165411 |
[17] |
HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E. A review of definitions and measures of system resilience[J]. Reliability Engineering & System Safety, 2016, 145:47-61.
doi: 10.1016/j.ress.2015.08.006 |
[18] |
EMENIKE S N, FALCONE G. A review on energy supply chain resilience through optimization[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110088.
doi: 10.1016/j.rser.2020.110088 |
[19] |
SHARIFI A, YAMAGATA Y. Principles and criteria for assessing urban energy resilience:A literature review[J]. Renewable and Sustainable Energy Reviews, 2016, 60:1654-1677.
doi: 10.1016/j.rser.2016.03.028 |
[20] |
GOVINDAN R, AL-ANSARI T. Computational decision framework for enhancing resilience of the energy,water and food nexus in risky environments[J]. Renewable and Sustainable Energy Reviews, 2019, 112:653-668.
doi: 10.1016/j.rser.2019.06.015 |
[21] | 别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39(22):1-9. |
BIE Zhaohong, LIN Yanling, QIU Aici. Concept and research prospects of power system resilience[J]. Automation of Electric Power Systems, 2015, 39(22):1-9. | |
[22] | 别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9):2735-2745. |
BIE Zhaohong, LIN Chaofan, LI Gengfeng, et al. Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9):2735-2745. | |
[23] | 赵曰浩, 李知艺, 鞠平, 等. 低碳化转型下综合能源电力系统弹性:综述与展望[J]. 电力自动化设备, 2021, 41(9):13-23,47. |
ZHAO Yuehao, LI Zhiyi, JU Ping, et al. Resilience of power system with integrated energy in context of low-carbon energy transition:Review and prospects[J]. Electric Power Automation Equipment, 2021, 41(9):13-23,47. | |
[24] |
BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19:733-752.
doi: 10.1193/1.1623497 |
[25] | UK Cabinet Office. Keeping the country running:Natural hazards and infrastructure[R]. London: UK Cabinet Office, 2011. |
[26] |
WANG Y, ROUSIS A O, STRBAC G. On microgrids and resilience:A comprehensive review on modeling and operational strategies[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110313.
doi: 10.1016/j.rser.2020.110313 |
[27] |
MISHRA D K, GHADI M J, AZIZIVAHED A, et al. A review on resilience studies in active distribution systems[J]. Renewable and Sustainable Energy Reviews, 2021, 135:110201.
doi: 10.1016/j.rser.2020.110201 |
[28] | 鞠平, 王冲, 辛焕海, 等. 电力系统的柔性、弹性与韧性研究[J]. 电力自动化设备, 2019, 39(11):1-7. |
JU Ping, WANG Chong, XIN Huanhai, et al. Flexibility,resilience and toughness of power system[J]. Electric Power Automation Equipment, 2019, 39(11):1-7. | |
[29] | 唐文虎, 杨毅豪, 李雅晶, 等. 极端气象灾害下输电系统的弹性评估及其提升措施研究[J]. 中国电机工程学报, 2020, 40(7):2244-2254. |
TANG Wenhu, YANG Yihao, LI Yajing, et al. Investigation on resilience assessment and enhancement for power transmission systems under extreme meteorological disasters[J]. Proceedings of the CSEE, 2020, 40(7):2244-2254. | |
[30] |
ARGHANDEH R, VON MEIER A, MEHRMANESH L, et al. On the definition of cyber-physical resilience in power systems[J]. Renewable and Sustainable Energy Reviews, 2016, 58:1060-1069.
doi: 10.1016/j.rser.2015.12.193 |
[31] |
MCDANIELS T, CHANG S, COLE D, et al. Fostering resilience to extreme events within infrastructure systems:Characterizing decision contexts for mitigation and adaptation[J]. Global Environmental Change, 2008, 18(2):310-318.
doi: 10.1016/j.gloenvcha.2008.03.001 |
[32] |
LI Z, SHAHIDEHPOUR M, AMINIFAR F, et al. Networked microgrids for enhancing the power system resilience[J]. Proceedings of the IEEE, 2017, 105(7):1289-1310.
doi: 10.1109/JPROC.2017.2685558 |
[33] |
JUFRI F H, WIDIPUTRA V, JUNG J. State-of-the-art review on power grid resilience to extreme weather events:Definitions,frameworks,quantitative assessment methodologies,and enhancement strategies[J]. Applied Energy, 2019, 239:1049-1065.
doi: 10.1016/j.apenergy.2019.02.017 |
[34] | 阮前途, 谢伟, 许寅, 等. 韧性电网的概念与关键特征[J]. 中国电机工程学报, 2020, 40(21):6773-6784. |
RUAN Qiantu, XIE Wei, XU Yin, et al. Concept and key features of resilient power grids[J]. Proceedings of the CSEE, 2020, 40(21):6773-6784. | |
[35] | 陈健, 林咨良, 赵浩然, 等. 考虑信息耦合的电-气综合能源系统韧性优化方法[J]. 中国电机工程学报, 2020, 40(21):6854-6864. |
CHEN Jian, LIN Ziliang, ZHAO Haoran, et al. Optimization method for resilience of integrated electric-gas system with consideration of cyber coupling[J]. Proceedings of the CSEE, 2020, 40(21):6854-6864. | |
[36] | 加鹤萍, 丁一, 宋永华, 等. 信息物理深度融合背景下综合能源系统可靠性分析评述[J]. 电网技术, 2019, 43(1):1-11. |
JIA Heping, DING Yi, SONG Yonghua, et al. Review of reliability analysis for integrated energy systems with integration of cyber physical systems[J]. Power System Technology, 2019, 43(1):1-11. | |
[37] | 郭庆来, 辛蜀骏, 孙宏斌, 等. 电力系统信息物理融合建模与综合安全评估:驱动力与研究构想[J]. 中国电机工程学报, 2016, 36(6):1481-1489. |
GUO Qinglai, XIN Shujun, SUN Hongbin, et al. Power system cyber-physical modelling and security assessment:Motivation and ideas[J]. Proceedings of the CSEE, 2016, 36(6):1481-1489. | |
[38] |
HE Y, SHAHIDEHPOUR M, LI Z, et al. Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3):1061-1071.
doi: 10.1109/TSTE.2017.2764004 |
[39] |
LIU F, BIE Z, WANG X. Day-ahead dispatch of integrated electricity and natural gas system considering reserve scheduling and renewable uncertainties[J]. IEEE Transactions on Sustainable Energy, 2019, 10(2):646-658.
doi: 10.1109/TSTE.5165391 |
[40] |
WANG C, WANG Z, HOU Y, et al. Dynamic game-based maintenance scheduling of integrated electric and natural gas grids with a bilevel approach[J]. IEEE Transactions on Power Systems, 2018, 33(5):4958-4971.
doi: 10.1109/TPWRS.59 |
[41] |
WANG C, WANG Z, WANG J, et al. Chance-constrained maintenance scheduling for interdependent power and natural gas grids considering wind power uncertainty[J]. IET Generation,Transmission & Distribution, 2019, 13(5):686-694.
doi: 10.1049/gtd2.v13.5 |
[42] | 董帅, 王成福, 徐士杰, 等. 计及网络动态特性的电-气-热综合能源系统日前优化调度[J]. 电力系统自动化, 2018, 42(13):12-19. |
DONG Shuai, WANG Chengfu, XU Shijie, et al. Day-ahead optimal scheduling of electricity-gas-heat integrated energy system considering dynamic characteristics of networks[J]. Automation of Electric Power Systems, 2018, 42(13):12-19. | |
[43] |
LU S, GU W, MENG K, et al. Thermal inertial aggregation model for integrated energy systems[J]. IEEE Transactions on Power Systems, 2020, 35:2374-2387.
doi: 10.1109/TPWRS.59 |
[44] | ZHANG M, WU Q, WEN J, et al. Optimal operation of integrated electricity and heat system:A review of modeling and solution methods[J]. Renewable & Sustainable Energy Reviews, 2021, 135:110098. |
[45] |
FANG J, ZENG Q, AI X, et al. Dynamic optimal energy flow in the integrated natural gas and electrical power systems[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1):188-198.
doi: 10.1109/TSTE.2017.2717600 |
[46] |
YAN M, HE Y, SHAHIDEHPOUR M, et al. Coordinated regional-district operation of integrated energy systems for resilience enhancement in natural disasters[J]. IEEE Transactions on Smart Grid, 2019, 10(5):4881-4892.
doi: 10.1109/TSG.5165411 |
[47] |
QI F, SHAHIDEHPOUR M, WEN F, et al. Decentralized privacy-preserving operation of multi-area integrated electricity and natural gas systems with renewable energy resources[J]. IEEE Transactions on Sustainable Energy, 2020, 11:1785-1796.
doi: 10.1109/TSTE.5165391 |
[48] | 王程, 吴科宏, 贾起越, 等. 基于显式差分的区域电-气综合能源系统动态能流计算方法[J]. 中国电机工程学报, 2022, 42(16):5775-5785. |
WANG Cheng, WU Kehong, JIA Qiyue, et al. An explicit difference based calculation method for dynamic energy flow of integrated electric-gas systems[J]. Proceedings of the CSEE, 2022, 42(16):5775-5785. | |
[49] | 陈瑜玮, 孙宏斌, 郭庆来. 综合能源系统分析的统一能路理论(五):电-热-气耦合系统优化调度[J]. 中国电机工程学报, 2020, 40(24):7928-7937,8230. |
CHEN Yuwei, SUN Hongbin, GUO Qinglai. Energy circuit theory of integrated energy system analysis (V):Integrated electricity-heat-gas dispatch[J]. Proceedings of the CSEE, 2020, 40(24):7928-7937,8230. | |
[50] | 陈彬彬, 孙宏斌, 吴文传, 等. 综合能源系统分析的统一能路理论(三):稳态与动态潮流计算[J]. 中国电机工程学报, 2020, 40(15):4820-4830. |
CHEN Binbin, SUN Hongbin, WU Wenchuan, et al. Energy circuit theory of integrated energy system analysis (III):Steady and dynamic energy flow calculation[J]. Proceedings of the CSEE, 2020, 40(15):4820-4830. | |
[51] | 尹冠雄, 陈彬彬, 孙宏斌, 等. 综合能源系统分析的统一能路理论(四):天然气网动态状态估计[J]. 中国电机工程学报, 2020, 40(18):5827-5836. |
YIN Guanxiong, CHEN Binbin, SUN Hongbin, et al. Energy circuit theory of integrated energy system analysis (IV):Dynamic state estimation of the natural gas network[J]. Proceedings of the CSEE, 2020, 40(18):5827-5836. | |
[52] | 陈彬彬, 孙宏斌, 陈瑜玮, 等. 综合能源系统分析的统一能路理论(一):气路[J]. 中国电机工程学报, 2020, 40(2):436-444. |
CHEN Binbin, SUN Hongbin, CHEN Yuwei, et al. Energy circuit theory of integrated energy system analysis (I):Gaseous circuit[J]. Proceedings of the CSEE, 2020, 40(2):436-444. | |
[53] | 陈彬彬, 孙宏斌, 尹冠雄, 等. 综合能源系统分析的统一能路理论(二):水路与热路[J]. 中国电机工程学报, 2020, 40(7):2133-2142,393. |
CHEN Binbin, SUN Hongbin, YIN Guanxiong, et al. Energy circuit theory of integrated energy system analysis (II):Hydraulic circuit and thermal circuit[J]. Proceedings of the CSEE, 2020, 40(7):2133-2142,393. | |
[54] |
YANG J, ZHANG N, KANG C, et al. Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33:2087-2097.
doi: 10.1109/TPWRS.2017.2733222 |
[55] |
LI M, LIU R R, LÜ L, et al. Percolation on complex networks:Theory and application[J]. Physics Reports, 2021, 907:1-68.
doi: 10.1016/j.physrep.2020.12.003 |
[56] | 刘依晗, 王宇飞. 新型电力系统中跨域连锁故障的演化机理与主动防御探索[J]. 中国电力, 2022, 55(2):62-72,81. |
LIU Yihan, WANG Yufei. Exploring the evolution mechanism and active defense of cross-domain cascading failures in new type power system[J]. Electric Power, 2022, 55(2):62-72,81. | |
[57] |
HUANG G, WANG J, CHEN C, et al. Cyber-constrained optimal power flow model for smart grid resilience enhancement[J]. IEEE Transactions on Smart Grid, 2019, 10(5):5547-5555.
doi: 10.1109/TSG.5165411 |
[58] | 许珞, 郭庆来, 刘新展, 等. 提升电力信息物理系统韧性的通信网鲁棒优化方法[J]. 电力系统自动化, 2021, 45(3):68-75. |
XU Luo, GUO Qinglai, LIU Xinzhan, et al. Robust optimization method of communication network to improve resilience of cyber-physical power system[J]. Automation of Electric Power Systems, 2021, 45(3):68-75. | |
[59] | 赵俊华, 文福拴, 薛禹胜, 等. 电力信息物理融合系统的建模分析与控制研究框架[J]. 电力系统自动化, 2011, 35(16):1-8. |
ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Modeling analysis and control research framework of cyber physical power systems[J]. Automation of Electric Power Systems, 2011, 35(16):1-8. | |
[60] | WANG C, ZHU Y, SHI W, et al. A dependable time series analytic framework for cyber-physical systems of IoT-based smart grid[J]. ACM Transactions on Cyber- Physical Systems, 2019, 3:1-18. |
[61] |
FARRAJ A K, HAMMAD E M, KUNDUR D. A cyber-physical control framework for transient stability in smart grids[J]. IEEE Transactions on Smart Grid, 2018, 9:1205-1215.
doi: 10.1109/TSG.2016.2581588 |
[62] | 王轶楠. 电力信息物理系统建模及网络攻击环境下的脆弱性研究[D]. 杭州: 浙江大学, 2019. |
WANG Yinan. Modeling technique and vulnerability assessment of electrical cyber physical systems considering cyber attacks[D]. Hangzhou: Zhejiang University, 2019. | |
[63] |
BULDYREV S, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464:1025-1028.
doi: 10.1038/nature08932 |
[64] | 刘文颖, 杨楠, 张建立, 等. 计及恶劣天气因素的复杂电网连锁故障事故链模型[J]. 中国电机工程学报, 2012, 32(7):53-59,191. |
LIU Wenying, YANG Nan, ZHANG Jianli, et al. Complex grid failure propagating chain model in consideration of adverse weather[J]. Proceedings of the CSEE, 2012, 32(7):53-59,191. | |
[65] |
JU W, DOBSON I, MARTIN K, et al. Real-time area angle monitoring using synchrophasors:A practical framework and utility deployment[J]. IEEE Transactions on Smart Grid, 2021, 12(1):859-870.
doi: 10.1109/TSG.5165411 |
[66] |
YANG S, CHEN W, ZHANG X, et al. A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures[J]. Reliability Engineering & System Safety, 2021, 207:107354.
doi: 10.1016/j.ress.2020.107354 |
[67] |
WANG Y, HUANG L, SHAHIDEHPOUR M, et al. Impact of cascading and common-cause outages on resilience-constrained optimal economic operation of power systems[J]. IEEE Transactions on Smart Grid, 2020, 11(1):590-601.
doi: 10.1109/TSG.5165411 |
[68] |
WANG Y, HUANG L, SHAHIDEHPOUR M, et al. Resilience-constrained hourly unit commitment in electricity grids[J]. IEEE Transactions on Power Systems, 2018, 33(5):5604-5614.
doi: 10.1109/TPWRS.59 |
[69] |
LIU H, WANG C, JU P, et al. A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures[J]. Renewable and Sustainable Energy Reviews, 2022, 156:111945.
doi: 10.1016/j.rser.2021.111945 |
[70] | 鞠平, 沈赋, 吴峰. 综合能源电力系统的在线分布互联建模研究[J]. 电力自动化设备, 2017, 37(6):11-14. |
JU Ping, SHEN Fu, WU Feng. Research on distributed and interconnected online modeling of PS-IE[J]. Electric Power Automation Equipment, 2017, 37(6):11-14. | |
[71] |
BAO M, DING Y, SANG M, et al. Modeling and evaluating nodal resilience of multi-energy systems under windstorms[J]. Applied Energy, 2020, 270:115136.
doi: 10.1016/j.apenergy.2020.115136 |
[72] | 包铭磊, 杨阳, 丁一, 等. 考虑天然气系统影响的电力系统连锁故障评估[J]. 电网技术, 2019, 43(1):32-40. |
BAO Minglei, YANG Yang, DING Yi, et al. Assessment of cascading failures in power system considering effects of natural gas system[J]. Power System Technology, 2019, 43(1):32-40. | |
[73] |
LIU X, CHEN B, CHEN C, et al. Electric power grid resilience with interdependencies between power and communication networks:A review[J]. IET Smart Grid, 2020, 3(2):182-193.
doi: 10.1049/stg2.v3.2 |
[74] | 庞凯元, 王一铮, 文福拴, 等. 计及通信失效的输电系统信息物理协同恢复策略[J]. 电力系统自动化, 2021, 45(3):58-67. |
PANG Kaiyuan, WANG Yizheng, WEN Fushuan, et al. Cyber-physical collaborative restoration strategy for power transmission system with communication failures[J]. Automation of Electric Power Systems, 2021, 45(3):58-67. | |
[75] |
JOO Y, QU Z, NAMERIKAWA T. Resilient control of cyber-physical system using nonlinear encoding signal against system integrity attacks[J]. IEEE Transactions on Automatic Control, 2021, 66(9):4334-4341.
doi: 10.1109/TAC.2020.3034195 |
[76] |
CLARK A, ZONOUZ S. Cyber-physical resilience:Definition and assessment metric[J]. IEEE Transactions on Smart Grid, 2019, 10(2):1671-1684.
doi: 10.1109/TSG.5165411 |
[77] |
LIU H, CHEN X, HUO L, et al. Impact of inter-network assortativity on robustness against cascading failures in cyber-physical power systems[J]. Reliability Engineering & System Safety, 2022, 217:108068.
doi: 10.1016/j.ress.2021.108068 |
[78] |
WANG Y, LIU Y, LI J. Deducing cascading failures caused by cyberattacks based on attack gains and cost principle in cyber-physical power systems[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(6):1450-1460.
doi: 10.1007/s40565-019-0500-2 |
[79] | 李琰, 吴妍瑜, 徐天奇. 电力信息耦合网络电力侧对信息侧鲁棒性影响研究[J]. 电气工程学报, 2020, 15(4):27-34. |
LI Yan, WU Yanyu, XU Tianqi. Research on the robustness of the information system influenced by the power system based on the cyber-physical coupling system[J]. Journal of Electrical Engineering, 2020, 15(4):27-34. | |
[80] |
HOSSAIN E, ROY S, MOHAMMAD N, et al. Metrics and enhancement strategies for grid resilience and reliability during natural disasters[J]. Applied Energy, 2021, 290:116709.
doi: 10.1016/j.apenergy.2021.116709 |
[81] |
POULIN C R, KANE M. Infrastructure resilience curves:Performance measures and summary metrics[J]. Reliability Engineering & System Safety, 2021, 216:107926.
doi: 10.1016/j.ress.2021.107926 |
[82] |
CHENG Y, ELSAYED E A, HUANG Z. Systems resilience assessments:A review,framework and metrics[J]. International Journal of Production Research, 2022, 60:595-622.
doi: 10.1080/00207543.2021.1971789 |
[83] |
SHEN L, CASSOTTANA B, HEINIMANN H R, et al. Large scale systems resilience:A survey and unifying framework[J]. Quality and Reliability Engineering International, 2020, 36:1386-1401.
doi: 10.1002/qre.v36.4 |
[84] |
HENRY D, RAMIREZ-MARQUEZ J E. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012, 99:114-122.
doi: 10.1016/j.ress.2011.09.002 |
[85] |
PANTELI M, TRAKAS D N, MANCARELLA P, et al. Power systems resilience assessment:Hardening and smart operational enhancement strategies[J]. Proceedings of the IEEE, 2017, 105(7):1202-1213.
doi: 10.1109/JPROC.2017.2691357 |
[86] |
CAI B, XIE M, LIU Y, et al. Availability-based engineering resilience metric and its corresponding evaluation methodology[J]. Reliability Engineering & System Safety, 2018, 172:216-224.
doi: 10.1016/j.ress.2017.12.021 |
[87] |
NAJAFI J, PEIRAVI A, GUERRERO J M. Power distribution system improvement planning under hurricanes based on a new resilience index[J]. Sustainable Cities and Society, 2018, 39:592-604.
doi: 10.1016/j.scs.2018.03.022 |
[88] |
BAJPAI P, CHANDA S, SRIVASTAVA A K. A novel metric to quantify and enable resilient distribution system using graph theory and choquet integral[J]. IEEE Transactions on Smart Grid, 2018, 9:2918-2929.
doi: 10.1109/TSG.2016.2623818 |
[89] |
CHANDA S, SRIVASTAVA A K. Defining and enabling resiliency of electric distribution systems with multiple microgrids[J]. IEEE Transactions on Smart Grid, 2016, 7(6):2859-2868.
doi: 10.1109/TSG.2016.2561303 |
[90] |
KIM D H, EISENBERG D A, CHUN Y H, et al. Network topology and resilience analysis of South Korean power grid[J]. Physica A:Statistical Mechanics and Its Applications, 2017, 465:13-24.
doi: 10.1016/j.physa.2016.08.002 |
[91] | 徐敬友, 丁坚勇, 杨东俊, 等. 基于图论及网络等值的配电网可靠性评估方法[J]. 电气工程学报, 2021, 16(3):92-98. |
XU Jingyou, DING Jianyong, YANG Dongjun, et al. Distribution network reliability evaluation method based on graph theory and network equivalence[J]. Journal of Electrical Engineering, 2021, 16(3):92-98. | |
[92] |
ZHANG H, MA S, DING T, et al. Multi-stage multi-zone defender-attacker-defender model for optimal resilience strategy with distribution line hardening and energy storage system deployment[J]. IEEE Transactions on Smart Grid, 2021, 12(2):1194-1205.
doi: 10.1109/TSG.5165411 |
[93] |
SHAO C, SHAHIDEHPOUR M, WANG X, et al. Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience[J]. IEEE Transactions on Power Systems, 2017, 32(6):4418-4429.
doi: 10.1109/TPWRS.2017.2672728 |
[94] | 黄格超, 李更丰, 肖遥, 等. 综合考虑自然灾害与人为攻击的电-气互联系统优化配置方法研究[J]. 电网技术, 2021, 45(3):959-969. |
HUANG Gechao, LI Gengfeng, XIAO Yao, et al. Optimal placement for integrated electricity and gas energy system considering natural disasters and man-made attacks[J]. Power System Technology, 2021, 45(3):959-969. | |
[95] |
FU Q, MONTOYA L F, SOLANKI A, et al. Microgrid generation capacity design with renewables and energy storage addressing power quality and surety[J]. IEEE Transactions on Smart Grid, 2012, 3(4):2019-2027.
doi: 10.1109/TSG.2012.2223245 |
[96] | LEI S, WANG J, CHEN C, et al. Mobile emergency generator pre-positioning and real-time allocation for resilient response to natural disasters[J]. IEEE Transactions on Smart Grid, 2018, 9(3):2030-2041. |
[97] |
ARAB A, KHODAEI A, KHATOR S K, et al. Stochastic pre-hurricane restoration planning for electric power systems infrastructure[J]. IEEE Transactions on Smart Grid, 2015, 6(2):1046-1054.
doi: 10.1109/TSG.5165411 |
[98] |
HE C, DAI C, WU L, et al. Robust network hardening strategy for enhancing resilience of integrated electricity and natural gas distribution systems against natural disasters[J]. IEEE Transactions on Power Systems, 2018, 33(5):5787-5798.
doi: 10.1109/TPWRS.59 |
[99] |
YAN M, AI X, SHAHIDEHPOUR M, et al. Enhancing the transmission grid resilience in ice storms by optimal coordination of power system schedule with pre-positioning and routing of mobile DC de-icing devices[J]. IEEE Transactions on Power Systems, 2019, 34(4):2663-2674.
doi: 10.1109/TPWRS.59 |
[100] |
LEI S, CHEN C, SONG Y, et al. Radiality constraints for resilient reconfiguration of distribution systems:Formulation and application to microgrid formation[J]. IEEE Transactions on Smart Grid, 2020, 11(5):3944-3956.
doi: 10.1109/TSG.5165411 |
[101] |
LIU J, QIN C, YU Y. Enhancing distribution system resilience with proactive islanding and RCS-based fast fault isolation and service restoration[J]. IEEE Transactions on Smart Grid, 2020, 11(3):2381-2395.
doi: 10.1109/TSG.5165411 |
[102] |
PANTELI M, TRAKAS D N, MANCARELLA P, et al. Boosting the power grid resilience to extreme weather events using defensive islanding[J]. IEEE Transactions on Smart Grid, 2016, 7(6):2913-2922.
doi: 10.1109/TSG.2016.2535228 |
[103] | 赵鹏, 蒲天骄, 王新迎, 等. 面向能源互联网数字孪生的电力物联网关键技术及展望[J]. 中国电机工程学报, 2022, 42(2):447-458. |
ZHAO Peng, PU Tianjiao, WANG Xinying, et al. Key technologies and perspectives of power internet of things facing with digital twins of the energy internet[J]. Proceedings of the CSEE, 2022, 42(2):447-458. | |
[104] | 王毅, 陈启鑫, 张宁, 等. 5G通信与泛在电力物联网的融合:应用分析与研究展望[J]. 电网技术, 2019, 43(5):1575-1585. |
WANG Yi, CHEN Qixin, ZHANG Ning, et al. Fusion of the 5G communication and the ubiquitous electric internet of things:Application analysis and research prospects[J]. Power System Technology, 2019, 43(5):1575-1585. | |
[105] | 丁伟, 王国成, 许爱东, 等. 能源区块链的关键技术及信息安全问题研究[J]. 中国电机工程学报, 2018, 38(4):1026-1034,279. |
DING Wei, WANG Guocheng, XU Aidong, et al. Research on key technologies and information security issues of energy blockchain[J]. Proceedings of the CSEE, 2018, 38(4):1026-1034,279. | |
[106] |
WANG C, JU P, WU F, et al. Sequential steady-state security region-based transmission power system resilience enhancement[J]. Renewable and Sustainable Energy Reviews, 2021, 151:111533.
doi: 10.1016/j.rser.2021.111533 |
[107] | 王冲, 王秀丽, 鞠平, 等. 电力系统随机分析方法研究综述[J]. 电力系统自动化, 2022, 46(3):184-199. |
WANG Chong, WANG Xiuli, JU Ping, et al. Review of research on power system stochastic analysis methods[J]. Automation of Electric Power Systems, 2022, 46(3):184-199. | |
[108] |
WANG C, JU P, LEI S, et al. Markov decision process-based resilience enhancement for distribution systems:An approximate dynamic programming approach[J]. IEEE Transactions on Smart Grid, 2020, 11(3):2498-2510.
doi: 10.1109/TSG.5165411 |
[109] |
WANG C, HOU Y, QIU F, et al. Resilience enhancement with sequentially proactive operation strategies[J]. IEEE Transactions on Power Systems, 2017, 32(4):2847-2857.
doi: 10.1109/TPWRS.2016.2622858 |
[110] | 刘雨濛, 顾雪平, 王涛. 计及传播路径的电力系统连锁故障多阶段阻断控制[J]. 电力自动化设备, 2021, 41(12):151-157. |
LIU Yumeng, GU Xueping, WANG Tao. Multi-stage blocking control of power system cascading failures considering propagation path[J]. Electric Power Automation Equipment, 2021, 41(12):151-157. | |
[111] | 李承周, 王宁玲, 窦潇潇, 等. 多能源互补分布式能源系统集成研究综述及展望[J/OL]. 中国电机工程学报, 2022:1-25. [2022-09-22]. https://doi.org/10.13334/j.0258-8013.pcsee.220667. |
LI Chengzhou, WANG Ningling, DOU Xiaoxiao, et al. Review and prospect on the system integration of distributed energy system with the complementation of multiple energy sources[J/OL]. Proceedings of the CSEE, 2022:1-25. [2022-09-22]. https://doi.org/10.13334/j.0258-8013.pcsee.220667. | |
[112] | 杜蕙, 林涛, 李轻言, 等. 电力-天然气互联系统协同安全机制:现状,问题与挑战[J]. 电网技术, 2022, 46(10):3764-3777. |
DU Hui, LIN Tao, LI Qingyan, et al. Coordinated security mechanism for electric-gas interconnect systems:Status,problems,and challenges[J]. Power System Technology, 2022, 46(10):3764-3777. | |
[113] | 汤奕, 李梦雅, 王琦, 等. 电力信息物理系统网络攻击与防御研究综述(二)检测与保护[J]. 电力系统自动化, 2019, 43(10):1-9,18. |
TANG Yi, LI Mengya, WANG Qi, et al. A review on research of cyber-attacks and defense in cyber physical power systems part two detection and protection[J]. Automation of Electric Power Systems, 2019, 43(10):1-9,18. | |
[114] | WANG C, TEN C, HOU Y, et al. Cyber inference system for substation anomalies against alter-and-hide attacks[J]. IEEE Transactions on Power Systems, 2017, 32(2):896-909. |
[115] |
LIU Z, WANG L. Leveraging network topology optimization to strengthen power grid resilience against cyber-physical attacks[J]. IEEE Transactions on Smart Grid, 2021, 12(2):1552-1564.
doi: 10.1109/TSG.5165411 |
[116] | 叶茂, 刘艳, 顾雪平, 等. 基于条件风险方法的风电黑启动价值评估及其应用[J]. 电网技术, 2018, 42(11):3796-3805. |
YE Mao, LIU Yan, GU Xueping, et al. Black-start value evaluation of wind power using a conditional risk method and its application[J]. Power System Technology, 2018, 42(11):3796-3805. | |
[117] | 刘艳, 叶茂, 顾雪平, 等. 高比例可再生能源电力系统的黑启动服务定价方法[J]. 电力系统自动化, 2020, 44(21):145-155. |
LIU Yan, YE Mao, GU Xueping, et al. Pricing method for black-start service of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(21):145-155. | |
[118] |
LIN Y, CHEN B, WANG J, et al. A combined repair crew dispatch problem for resilient electric and natural gas system considering reconfiguration and DG islanding[J]. IEEE Transactions on Power Systems, 2019, 34(4):2755-2767.
doi: 10.1109/TPWRS.59 |
[119] |
ARIF A, WANG Z, WANG J, et al. Power distribution system outage management with co-optimization of repairs,reconfiguration,and DG dispatch[J]. IEEE Transactions on Smart Grid, 2018, 9(5):4109-4118.
doi: 10.1109/TSG.5165411 |
[120] |
BAHRAMI M, VAKILIAN M, FARZIN H, et al. Multi-step island formation and repair dispatch reinforced by mutual assistance after natural disasters[J]. International Journal of Electrical Power & Energy Systems, 2021, 126:106572.
doi: 10.1016/j.ijepes.2020.106572 |
[121] |
DING T, WANG Z, JIA W, et al. Multiperiod distribution system restoration with routing repair crews,mobile electric vehicles,and soft-open-point networked microgrids[J]. IEEE Transactions on Smart Grid, 2020, 11(6):4795-4808.
doi: 10.1109/TSG.5165411 |
[122] |
CHEN C, WANG J, QIU F, et al. Resilient distribution system by microgrids formation after natural disasters[J]. IEEE Transactions on Smart Grid, 2016, 7(2):958-966.
doi: 10.1109/TSG.2015.2429653 |
[123] | 赵晓琦, 张智, 姚琪, 等. 面向韧性提升的配电网开关优化配置模型[J]. 电气工程学报, 2020, 15(3):128-134. |
ZHAO Xiaoqi, ZHANG Zhi, YAO Qi, et al. Optimal configuration model of switch for distribution network based on resilience improvement[J]. Journal of Electrical Engineering, 2020, 15(3):128-134. | |
[124] | 杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12):130-139. |
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Vehicle-to-grid based resilience promotion strategy for urban distribution network under typhoon disaster[J]. Automation of Electric Power Systems, 2022, 46(12):130-139. | |
[125] | 陈厚合, 丛前, 姜涛, 等. 多能协同的配电网供电恢复策略[J]. 电工技术学报, 2022, 37(3):610-622,685. |
CHEN Houhe, CONG Qian, JIANG Tao, et al. Distribution systems restoration with multi-energy synergy[J]. Transactions of China Electrotechnical Society, 2022, 37(3):610-622,685. | |
[126] |
DERAKHSHANDEH S Y, MOBINI Z, MOHAMMADI M, et al. UAV-assisted fault location in power distribution systems:An optimization approach[J]. IEEE Transactions on Smart Grid, 2019, 10(4):4628-4636.
doi: 10.1109/TSG.5165411 |
[127] |
LIM G J, KIM S, CHO J, et al. Multi-UAV pre-positioning and routing for power network damage assessment[J]. IEEE Transactions on Smart Grid, 2018, 9(4):3643-3651.
doi: 10.1109/TSG.2016.2637408 |
[128] | 刘瑞环, 陈晨, 刘菲, 等. 极端自然灾害下考虑信息-物理耦合的电力系统弹性提升策略:技术分析与研究展望[J]. 电机与控制学报, 2022, 26(1):9-23. |
LIU Ruihuan, CHEN Chen, LIU Fei, et al. Power system resilience enhancement strategy considering cyber-physical interdependence under disasters:Development and prospects[J]. Electric Machines and Control, 2022, 26(1):9-23. |
[1] | 王佳诺, 王奇, 韩健, 肖新标, 金学松. 考虑弹性轮对的车辆-轨道耦合动力学建模及减振特性研究[J]. 机械工程学报, 2023, 59(8): 235-244. |
[2] | 付晓军, 李欣, 马尚君, 王海伟, 刘更. 柱销式双螺母行星滚柱丝杠预紧机理研究[J]. 机械工程学报, 2023, 59(3): 122-132. |
[3] | 赵佳佳, 宋现春, 姜洪奎, 林明星, 宋丽伟. 考虑热弹流润滑作用的滚珠丝杠副摩擦力矩建模与分析[J]. 机械工程学报, 2023, 59(3): 176-188. |
[4] | 高帅, 韩勤锴, 褚福磊. 考虑热流固耦合的角接触滚动轴承动力学特性及打滑状态分析[J]. 机械工程学报, 2022, 58(9): 87-97. |
[5] | 林棻, 蔡亦璋, 赵又群, 臧利国, 王少博. 匹配机械弹性车轮的分布式驱动电动汽车稳定性控制[J]. 机械工程学报, 2022, 58(8): 236-243. |
[6] | 向红标, 程旭, 李梦伟, 王收军, 张冕, 黄显, 霍文星. 磁弹性微型游泳机器人在外部干扰和复杂路径下的精确跟踪控制[J]. 机械工程学报, 2022, 58(7): 93-102. |
[7] | 杨慧, 冯健, 刘永斌, 刘荣强. 百米级多超弹性铰链抛物柱面天线折展机构设计与运动学分析[J]. 机械工程学报, 2022, 58(3): 75-83. |
[8] | 余卓平, 史彪飞, 卓桂荣, 熊璐, 舒强. 集成式电子液压制动系统位移压力特性理论研究[J]. 机械工程学报, 2022, 58(22): 294-303. |
[9] | 邬奇睿, 祁孟盂, 周信, 王安斌. 弹性车轮对地铁直线段轨道减振特性研究[J]. 机械工程学报, 2022, 58(22): 395-405. |
[10] | 胡敏, 高鹏, 闵思婕, 刘睿, 丘天祥, 曾亿山, 刘常海. 超高压斜盘式轴向柱塞泵柱塞副摩擦界面油膜固液耦合作用特性研究[J]. 机械工程学报, 2022, 58(20): 438-452. |
[11] | 魏敦文, 高涛, 张翔宇, 葛文杰, 彭倍. 多构态仿生弹性驱动器结构设计及性能研究[J]. 机械工程学报, 2022, 58(13): 71-80. |
[12] | 武洪凯, 吴承伟. 嵌入弹性波纹环的轴承挤压油膜特性分析[J]. 机械工程学报, 2022, 58(13): 185-193. |
[13] | 孟飞, 邵满智, 牛越, 胡巍, 李春阳, 赵洪. 电压稳定剂对PP/弹性体共混物直流击穿强度影响[J]. 电气工程学报, 2022, 17(1): 234-243. |
[14] | 李栋, 刘晓玲, 李磊, 郭光福. 计入刚度影响效应的滚动直线导轨几何参数对润滑性能的影响[J]. 机械工程学报, 2021, 57(7): 100-108. |
[15] | 汤桂平, 刘庆萍, 宋波, 史玉升. 4D打印液晶弹性体工艺及其性能研究[J]. 机械工程学报, 2021, 57(7): 234-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||