电气工程学报 ›› 2021, Vol. 16 ›› Issue (2): 12-24.doi: 10.11985/2021.02.003
收稿日期:
2021-04-25
修回日期:
2021-05-31
出版日期:
2021-06-25
发布日期:
2021-08-05
通讯作者:
黄兴溢
E-mail:962285829@qq.com;linyinng01@sjtu.edu.cn;pkjiang@sjtu.edu.cn;xyhuang@sjtu.edu.cn
作者简介:
黄兴溢,男,1979年生,教授。主要研究方向为介电、能量储存和热管理聚合物材料。E-mail: xyhuang@sjtu.edu.cn基金资助:
JIANG Wenzheng(), LIN Ying(
), JIANG Pingkai(
), HUANG Xingyi(
)
Received:
2021-04-25
Revised:
2021-05-31
Online:
2021-06-25
Published:
2021-08-05
Contact:
HUANG Xingyi
E-mail:962285829@qq.com;linyinng01@sjtu.edu.cn;pkjiang@sjtu.edu.cn;xyhuang@sjtu.edu.cn
摘要:
在聚合物基导热复合材料中,构筑三维填料网络结构因能够为复合材料提供导热通路、降低界面热阻而受到广泛关注,综述了具有三维氮化硼导热网络结构的聚合物复合材料的研究进展。介绍了氮化硼的本征导热性质和氮化硼填料的改性方法。详细介绍了三维氮化硼导热网络的构建方法,包括杂化填料构建三维导热网络、模板法、自组装法、静电纺丝法及模压法等。介绍了导热三维氮化硼聚合物纳米复合材料的应用以及目前存在的问题和展望。
中图分类号:
姜文政, 林瑛, 江平开, 黄兴溢. 三维氮化硼结构及其导热绝缘聚合物纳米复合材料*[J]. 电气工程学报, 2021, 16(2): 12-24.
JIANG Wenzheng, LIN Ying, JIANG Pingkai, HUANG Xingyi. Three-dimensional Structured Boron Nitride and Its Thermally Conductive and Electrically Insulating Composites[J]. Journal of Electrical Engineering, 2021, 16(2): 12-24.
表2
不同BN三维网络材料构筑方法总结"
填料 | 基体 | 构筑方法 | 填料含量 | 热导率/ (W·m-1·K-1) | 文献 |
---|---|---|---|---|---|
BN/rGO | NR | 冰模板法 | 4.9 vol% | 1.29 | [ |
BN/GF | PDMS | 模板法 | 30 wt% | 23.45(∥)/2.11(⊥) | [ |
BN/CNT | EP | 杂化填料 | 50 wt% | 1.986 | [ |
BNNT | CNFs | 真空过滤 | 25 wt% | 21.39 | [ |
BN/Al2O3 | PDMS | 3D打印 | 35 wt% | 3.64 | [ |
BNNs/AgNPs | EP | 杂化填料 | 20 wt% | 1.13 | [ |
BN/BNNS | PDMS | 模板法 | 10 wt% | 0.56 | [ |
BNNS | EP | 模板法 | 1.1 vol% | 0.6 | [ |
BN | EP | 冰模板法 | 34 vol% | 4.42 | [ |
BNNS | EP | 冰模板法 | 15 vol% | 3.87(∥)/4.02(⊥) | [ |
BN/rGO | EP | 自组装法 | 13.16 vol% | 5.05 | [ |
BNNS | PVDF | 静电纺丝 | 33 wt% | 16.3 | [ |
BNNS | PS/PP | 溶液辅助热压法 | 50 wt% | 5.57 | [ |
BN/GNPs | PA6 | 熔融混合模压法 | 21 vol% | 8.96 | [ |
BN | EP | 盐模板法 | 59.43 wt% | 6.11 | [ |
BN | PU | 鼓泡法+热压法 | 50 wt% | 10.28 | [ |
BN | PI | 力化学法 | 20 wt% | 14.7 | [ |
BN | PA66 | 等离子体辅助力化学法 | 20 wt% | 26.3 | [ |
[1] | GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers and polymer composites:A review[J]. Composites Science and Technology, 2020, 193:180134. |
[2] |
MA H, GAO B, WANG M, et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials:A review[J]. Journal of Materials Science, 2020, 56(2):1064-1086.
doi: 10.1007/s10853-020-05279-x |
[3] |
FENG C P, YANG L Y, YANG J, et al. Recent advances in polymer-based thermal interface materials for thermal management:A mini-review[J]. Composites Communications, 2020, 22:100528.
doi: 10.1016/j.coco.2020.100528 |
[4] |
LEWIS J S, PERRIER T, BARANI Z, et al. Thermal interface materials with graphene fillers:Review of the state of the art and outlook of future applications[J]. Nanotechnology, 2020, 32:142003.
doi: 10.1088/1361-6528/abc0c6 |
[5] | BAHRU R, ZAMRI M F M A, SHAMSUDDIN A H, et al. A review of thermal interface material fabrication method toward enhancing heat dissipation[J]. International Journal of Energy Research, 2020:1-21. |
[6] |
YANG S, XUE B, LI Y, et al. Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films[J]. Chemical Engineering Journal, 2020, 383:123072.
doi: 10.1016/j.cej.2019.123072 |
[7] |
LI C, TAN L Y, ZENG X L, et al. Polymer composites with high thermal conductivity optimized by polyline-folded graphite paper[J]. Composites Science and Technology, 2020, 188:107970.
doi: 10.1016/j.compscitech.2019.107970 |
[8] |
KHAN J, MOMIN S A, MARIATTI M. A review on advanced carbon-based thermal interface materials for electronic devices[J]. Carbon, 2020, 168:65-112.
doi: 10.1016/j.carbon.2020.06.012 |
[9] |
FENG C P, BAI L, BAO R Y, et al. Superior thermal interface materials for thermal management[J]. Composites Communications, 2019, 12:80-85.
doi: 10.1016/j.coco.2019.01.003 |
[10] | LÜ L, DAI W, LI A, et al. Graphene-based thermal interface materials:An application-oriented perspective on architecture design[J]. Polymers(Basel), 2018, 10:1201. |
[11] |
FANG H, BAI S L, WONG C P. Microstructure engineering of graphene towards highly thermal conductive composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112:216-238.
doi: 10.1016/j.compositesa.2018.06.010 |
[12] |
AN F, LI X, MIN P, et al. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities[J]. ACS Appl. Mater. Interfaces, 2018, 10(20):17383-17392.
doi: 10.1021/acsami.8b04230 |
[13] |
SONG N, JIAO D, CUI S, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Appl. Mater. Interfaces, 2017, 9(3):2924-2932.
doi: 10.1021/acsami.6b11979 |
[14] |
ZHANG Y F, HAN D, ZHAO Y H, et al. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer[J]. Carbon, 2016, 109:552-557.
doi: 10.1016/j.carbon.2016.08.051 |
[15] |
FANG H, ZHAO Y, ZHANG Y, et al. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties[J]. ACS Appl. Mater. Interfaces, 2017, 9(31):26447-26459.
doi: 10.1021/acsami.7b07650 |
[16] |
JUNG H, YU S, BAE N S, et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube[J]. ACS Appl. Mater. Interfaces, 2015, 7(28):15256-15262.
doi: 10.1021/acsami.5b02681 |
[17] |
HSIEH C T, LEE C E, CHEN Y F, et al. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets[J]. Nanoscale, 2015, 7(44):18663-18670.
doi: 10.1039/C5NR04993H |
[18] | 李晨. 六方氮化硼纳米片的制备、功能化及其在导热聚合物中的应用[D]. 济南:山东大学, 2016. |
LI Chen. Preparation,functionalization of hexagonal boron nitride nanosheets and their application in thermally conductive polymer[D]. Jinan:Shandong University, 2016. | |
[19] | 冷鑫钰, 肖超, 陈璐, 等. 环氧树脂中3D氮化硼复合导热网络的构筑及性能[J]. 高分子材料科学与工程, 2019, 35(3):102-107. |
LENG Xinyu, XIAO Chao, CHEN Lu, et al. Constructing of 3D micro-nano boron nitride networks in epoxy resin and characterization[J]. Polymer Materials Science & Engineering, 2019, 35(3):102-107. | |
[20] | 林正得, 颜庆伟, 代文, 等. 六方氮化硼导热复合材料研究进展[J]. 集成技术, 2019, 8(1):24-37. |
LIN Zhengde, YAN Qingwei, DAI Wen, et al. Research progess on hexagonal bonron nitride-based thermal conductive composites[J]. Journal of Integration Technology, 2019, 8(1):24-37. | |
[21] | 戢炳强, 吴冶平, 张平, 等. 六方氮化硼/聚合物导热复合材料研究进展[J]. 高分子通报, 2019, 9:15-25. |
JI Bingqiang, WU Yeping, ZHANG Ping, et al. Research progress of hexagonal boron nitride/polymer thermal conductive composites[J]. Polymer Bulletin, 2019, 9:15-25. | |
[22] | 石倩, 雷华, 陈枭, 等. 氮化硼/聚合物导热复合材料的进展[J]. 塑料, 2018, 47(3):110-112,117. |
SHI Qian, LEI Hua, CHEN Xiao, et al. Progress on boron nitride/polymer thermally conductive composite[J]. Plastics, 2018, 47(3):110-112,117. | |
[23] | 杜言莉, 王欢, 龚伟, 等. 氮化硼及其在导热复合材料中的研究进展[J]. 包装工程, 2018, 39(21):72-79. |
DU Yanli, WANG Huan, GONG Wei, et al. Research progress of boron nitride and its application in thermal conductivity composites[J]. Packaging Engineering, 2018, 39(21):72-79. | |
[24] | 肖倩. 改性氮化硼/聚芳醚腈导热材料的制备与性能研究[D]. 成都:电子科技大学, 2019. |
XIAO Qian. Preparation and study of polyarylene ether nitrile/modified boron nitride thermal conductive composites[D]. Chengdu:University of Electronic Science and Technology of China, 2019. | |
[25] |
XUE Y, WANG H, LI X, et al. Synergy boost thermal conductivity through the design of vertically aligned 3D boron nitride and graphene hybrids in silicone rubber under low loading[J]. Materials Letters, 2020, 281:128596.
doi: 10.1016/j.matlet.2020.128596 |
[26] |
AN D, CHENG S, ZHANG Z, et al. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections[J]. Carbon, 2019, 155:258-267.
doi: 10.1016/j.carbon.2019.08.072 |
[27] |
FANG H, ZHANG X, ZHAO Y, et al. Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength[J]. Composites Science and Technology, 2017, 152:243-253.
doi: 10.1016/j.compscitech.2017.09.032 |
[28] |
HU B, GUO H, WANG Q, et al. Enhanced thermal conductivity by constructing 3D-networks in poly(vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes[J]. Composites Part A:Applied Science and Manufacturing, 2020, 137:106038.
doi: 10.1016/j.compositesa.2020.106038 |
[29] |
ZHANG D L, LIU S N, CAI H W, et al. Enhanced thermal conductivity and dielectric properties in electrostatic self-assembly 3D pBN@nCNTs fillers loaded in epoxy resin composites[J]. Journal of Materiomics, 2020, 6(4):751-759.
doi: 10.1016/j.jmat.2020.06.013 |
[30] |
JIANG Y, SHI X, FENG Y, et al. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride[J]. Composites Part A:Applied Science and Manufacturing, 2018, 107:657-664.
doi: 10.1016/j.compositesa.2018.02.016 |
[31] |
ZENG X, YAO Y, GONG Z, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small, 2015, 11(46):6205-6213.
doi: 10.1002/smll.v11.46 |
[32] |
LIU Y, ZHANG Y, LIAO T, et al. Boron nitride-nanosheet enhanced cellulose nanofiber aerogel with excellent thermal management properties[J]. Carbohydrate Polymers, 2020, 241:116425.
doi: 10.1016/j.carbpol.2020.116425 |
[33] |
ZENG X, SUN J, YAO Y, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano, 2017, 11(5):5167-5178.
doi: 10.1021/acsnano.7b02359 |
[34] |
LIU M, CHIANG S W, CHU X, et al. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3D printing[J]. Ceramics International, 2020, 46(13):20810-20818.
doi: 10.1016/j.ceramint.2020.05.096 |
[35] |
CHEN C, XUE Y, LI Z, et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal, 2019, 369:1150-1160.
doi: 10.1016/j.cej.2019.03.150 |
[36] |
FANG H, BAI S L, WONG C P. Thermal,mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application[J]. Composites Part A:Applied Science and Manufacturing, 2017, 100:71-80.
doi: 10.1016/j.compositesa.2017.04.018 |
[37] |
WANG X, WU P. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading[J]. Chemical Engineering Journal, 2018, 348:723-731.
doi: 10.1016/j.cej.2018.04.196 |
[38] | HU J, HUANG Y, YAO Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN[J]. ACS Applied Materials & Interfaces, 2017, 9(15):13544-13553. |
[39] |
HUANG T, LI Y, CHEN M, et al. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae[J]. Composites Science and Technology, 2020, 198:108322.
doi: 10.1016/j.compscitech.2020.108322 |
[40] |
QIN M, XU Y, CAO R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge[J]. Advanced Functional Materials, 2018, 28(45):1805053.
doi: 10.1002/adfm.v28.45 |
[41] |
YAO Y, SUN J, ZENG X, et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity[J]. Small, 2018, 14(13):1704044.
doi: 10.1002/smll.v14.13 |
[42] |
CHEN J, HUANG X, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano, 2018, 13(1):337-345.
doi: 10.1021/acsnano.8b06290 |
[43] |
LIU B, LI Y, FEI T, et al. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method[J]. Chemical Engineering Journal, 2020, 385:123829.
doi: 10.1016/j.cej.2019.123829 |
[44] |
ZHANG X, WU K, LIU Y, et al. Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites[J]. Composites Science and Technology, 2019, 175:135-142.
doi: 10.1016/j.compscitech.2019.03.017 |
[45] |
XU X, HU R, CHEN M, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal, 2020, 397:125447.
doi: 10.1016/j.cej.2020.125447 |
[46] |
HONG H J, KWAN S M, LEE D S, et al. Highly flexible and stretchable thermally conductive composite film by polyurethane supported 3D networks of boron nitride[J]. Composites Science and Technology, 2017, 152:94-100.
doi: 10.1016/j.compscitech.2017.09.020 |
[47] |
OU X, CHEN S, LU X, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications, 2021, 23:100549.
doi: 10.1016/j.coco.2020.100549 |
[48] |
YOU J, CHOI H H, LEE Y M, et al. Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties[J]. Composites Part B:Engineering, 2019, 164:710-719.
doi: 10.1016/j.compositesb.2019.01.100 |
[49] |
LIU D, LEI C, WU K, et al. A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal- electric conversion[J]. ACS Nano, 2020, 14(11):15738-15747.
doi: 10.1021/acsnano.0c06680 |
[50] |
XIAO G, DI J, LI H, et al. Highly thermally conductive,ductile biomimetic boron nitride/aramid nanofiber composite film[J]. Composites Science and Technology, 2020, 189:108021.
doi: 10.1016/j.compscitech.2020.108021 |
[1] | 靳田野, 陈俊云, 王金虎, 赵清亮. 纳米孪晶立方氮化硼的飞秒激光材料去除机理[J]. 机械工程学报, 2019, 55(9): 198-205. |
[2] | 靳田野, 陈俊云, 赵明慧, 王金虎, 赵清亮, 鹿玲. 纳米孪晶立方氮化硼机械研磨机理研究[J]. 机械工程学报, 2016, 52(5): 95-100. |
[3] | 丁文锋;徐九华;傅玉灿;苏宏华;肖冰;徐鸿钧. 银铜钛合金与立方氮化硼磨粒钎焊界面显微分层结构及形成机理[J]. , 2008, 44(6): 61-65. |
[4] | 殷声;罗振璧. 高压燃烧合成立方氮化硼刀具的实验研究[J]. , 1994, 30(4): 12-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||